1,528 research outputs found

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde

    A Tracker Solution for a Holographic Dark Energy Model

    Full text link
    We investigate a kind of holographic dark energy model with the future event horizon the IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d>1d>1, and dd smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.Comment: 10 pages, 3 figures; accepted for publication in Int.J.Mod.Phys.

    Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density

    Get PDF
    During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization

    The cusp: a window for particle exchange between the radiation belt and the solar wind

    Get PDF
    International audienceThe study focuses on a single particle dynamics in the cusp region. The topology of the cusp region in terms of magnetic field iso-B contours has been studied using the Tsyganenko 96 model (T96) as an example, to show the importance of an off-equatorial minimum on particle trapping. We carry out test particle simulations to demonstrate the bounce and drift motion. The "cusp trapping limit" concept is introduced to reflect the particle motion in the high latitude magnetospheric region. The spatial distribution of the "cusp trapping limit" shows that only those particles with near 90° pitch-angles can be trapped and drift around the cusp. Those with smaller pitch angles may be partly trapped in the iso-B contours, however, they will eventually escape along one of the magnetic field lines. There exist both open field lines and closed ones within the same drift orbit, indicating two possible destinations of these particles: those particles being lost along open field lines will be connected to the surface of the magnetopause and the solar wind, while those along closed ones will enter the equatorial radiation belt. Thus, it is believed that the cusp region can provide a window for particle exchange between these two regions. Some of the factors, such as dipole tilt angle, magnetospheric convection, IMF and the Birkeland current system, may influence the cusp's trapping capability and therefore affect the particle exchanging mechanism. Their roles are examined by both the analysis of cusp magnetic topology and test particle simulations

    Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes

    Get PDF
    Another approach (Multiple Triangulation Analysis, MTA) is presented to determine the orientation of magnetic flux rope, based on 4-point measurements. A 2-D flux rope model is used to examine the accuracy of the MTA technique in a theoretical way. It is found that the precision of the estimated orientation is dependent on both the spacecraft separation and the constellation path relative to the flux rope structure. However, the MTA error range can be shown to be smaller than that of the traditional MVA technique. As an application to real Cluster data, several flux rope events on 26 January 2001 are analyzed using MTA, to obtain their orientations. The results are compared with the ones obtained by several other methods which also yield flux rope orientation. The estimated axis orientations are shown to be fairly close, suggesting the reliability of the MTA method

    Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

    Get PDF
    Abstract We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L \u3e 6.07 over about 6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (∼0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60%-80% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 h. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale. Key Points Rapid outward extension of electron radiation belt observed by RBSP and THEMIS A two-step scenario to explain the rapid flux enchantment Differentiating between contributions of substorm injections and chorus waves

    Three‐dimensional lunar wake reconstructed from ARTEMIS data

    Full text link
    Data from the two‐spacecraft Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission to the Moon have been exploited to characterize the lunar wake with unprecedented fidelity. The differences between measurements made by a spacecraft in the solar wind very near the Moon and concurrent measurements made by a second spacecraft in the near lunar wake are small but systematic. They enabled us to establish the perturbations of plasma density, temperature, thermal, magnetic and total pressure, field, and flow downstream of the Moon to distances of 12 lunar radii ( R M ). The wake disturbances are initiated immediately behind the Moon by the diamagnetic currents at the lunar terminator. Rarefaction waves propagate outward at fast MHD wave velocities. Beyond ~6.5 R M , all plasma and field parameters are poorly structured which suggests the presence of instabilities excited by counter‐streaming particles. Inward flowing plasma accelerated through pressure gradient force and ambipolar electric field compresses the magnetic field and leads to continuous increase in magnitude of magnetic perturbations. Besides the downstream distance, the field perturbation magnitude is also a function of the solar wind ion beta and the angle between the solar wind and the interplanetary magnetic field (IMF). Both ion and electron temperatures increase as a consequence of an energy dispersion effect, whose explanation requires fully kinetic models. Downstream of the Moon, the IMF field lines are observed to bulge toward the Moon, which is unexpected and may be caused by a plasma pressure gradient force or/and the pickup of heavy charged dust grains behind the Moon. Key Points The 3‐D lunar wake is studied with well‐determined solar wind conditions The field lines bend in the wake due to flow deceleration The 3‐D wake structure is investigated by observation dataPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108259/1/jgra51135.pd

    Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    Get PDF
    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E)

    Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause

    No full text
    On 14 June 2007, four Time History of Events and Macroscale Interactions during Substorms spacecraft observed a flux transfer event (FTE) on the dayside magnetopause, which has been previously proved to be generated by multiple, sequential X-line reconnection (MSXR) in a 2-D context. This paper reports a further study of the MSXR event to show the 3-D viewpoint based on additional measurements. The 3-D structure of the FTE flux rope across the magnetospheric boundary is obtained on the basis of multipoint measurements taken on both sides of the magnetopause. The flux rope's azimuthally extended section is found to lie approximately on the magnetopause surface and parallel to the X-line direction; while the axis of the magnetospheric branch is essentially along the local unperturbed magnetospheric field lines. In the central region of the flux rope, as distinct from the traditional viewpoint, we find from the electron distributions that two types of magnetic field topology coexist: opened magnetic field lines connecting the magnetosphere and the magnetosheath and closed field lines connecting the Southern and Northern hemispheres. We confirm, therefore, for the first time, the characteristic feature of the 3-D reconnected magnetic flux rope, formed through MSXR, through a determination of the field topology and the plasma distributions within the flux rope. Knowledge of the complex geometry of FTE flux ropes will improve our understanding of solar wind-magnetosphere interaction.Astronomy & AstrophysicsSCI(E)5ARTICLE51904-191111

    Energetic ion injection and formation of the storm-time symmetric ring current

    Get PDF
    An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D) test particle trajectory calculations (TPTCs). The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1) an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2) Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3) The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current
    corecore