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Abstract We study the rapid outward extension of the electron radiation belt on a timescale of
several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and
Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm
injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt.
A comprehensive analysis including both observations and simulations is performed for the first event on
26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about
6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The
observations show that the substorm injection can cause 100% and 20% of the total subrelativistic
(∼0.1 MeV) and relativistic (2–5 MeV) electron flux enhancements within a few minutes. The data-driven
simulation supports that the strong chorus waves can yield 60%–80% of the total energetic (0.2–5.0 MeV)
electron flux enhancement within about 6 h. Some simple analyses are further given for the other
two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves
are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the
respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons
at different energies on a relatively short timescale.

1. Introduction

The electron radiation belts exhibit dramatic variability over timescales from minutes to decades
[e.g., Blake et al., 1992; Hudson et al., 1997; Reeves et al., 1998; Li et al., 2001; Horne et al., 2005b; Su et al.,
2011a; Baker et al., 2013b; Shprits et al., 2013]. These complex radiation belt dynamics can be attributed
to the competition and/or cooperation of various acceleration, loss, and transport mechanisms [Reeves
et al., 2003]. One important area of research is to differentiate among the contributions of those physical
mechanisms to the radiation belt evolution. Here we concentrate on two processes for the radiation belt
evolution on a timescale of hours: earthward injection during substorms and local acceleration by whistler
mode chorus waves.

Substorm injection is a large-scale transport process from the magnetotail to the inner magnetosphere
associated with the dipolarization of the geomagnetic field. It usually causes the enhancement of
electron fluxes over a wide range of energies from tens to hundreds of keV in the region L = 4–8
on a timescale of minutes [e.g., Reeves et al., 1990; Friedel et al., 1996; Baker et al., 1997, 1998].
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These substorm-injected subrelativistic electrons can serve as the seed particles for the subsequent
acceleration to relativistic energies [Hwang et al., 2004]. Through the test particle simulations, Liu et al.
[2003] showed that the quiescent Stern-Volland convection electric fields [Stern, 1973; Volland, 1973]
cannot inject the relativistic electrons into the radiation belt region. Li et al. [1998, 2003] emphasized the
importance of substorm-associated impulsive electric fields for the injection of energetic electrons.
In these test particle simulations [Li et al., 1998, 2003], the initial energy of midtail electrons and the
impulsive electric fields appeared to be too weak to produce the injection of relativistic electrons. Based on
the phase space density analysis, Lui et al. [2012] suggested that the source electrons in the region L > 8
during dipolarization intervals are adequate to populate the outer radiation belt even in the relativistic
energy range. Based on the observations of several radially displaced satellites, Dai et al. [2014] tracked
the substorm transport process from the magnetotail to the geostationary orbit and found the injection of
relativistic (up to several MeV) electrons by the dipolarization-associated intense electric fields.

Whistler mode chorus waves are often observed in the plasma trough region during geomagnetically
disturbed periods [e.g., Meredith et al., 2001], which are excited by the anisotropic suprathermal (from a
few keV to tens of keV) electrons near the magnetic equator [e.g., Omura et al., 2008; Li et al., 2009]. The
chorus emissions typically split into lower and upper bands with a gap around 0.5 fce (fce is the equatorial
electron gyrofrequency) [e.g., Tsurutani and Smith, 1974; Santoĺık et al., 2003a]. The theoretical [Horne and
Thorne, 1998; Summers et al., 1998], observational [e.g., Horne et al., 2005a; Meredith et al., 2012; Agapitov et
al., 2013; Thorne et al., 2013; Mourenas et al., 2014; Su et al., 2014b], and numerical [e.g., Summers et al., 2002;
Li et al., 2005; Glauert and Horne, 2005; Shprits et al., 2006; Albert et al., 2009; Su et al., 2010; Mourenas et al.,
2012; Glauert et al., 2014] works have revealed the importance of chorus-driven local acceleration for the
enhancement of radiation belt relativistic electrons on a timescale of days.

In this study, we investigate the rapid outward extension process of the electron radiation belt within several
hours for three events observed by the Radiation Belt Storm Probes (RBSP) [Mauk et al., 2013] and the Time
History of Events and Macroscale Interactions during Substorms (THEMIS) satellites [Angelopoulos, 2008].
For the first event on 26 May 2013, a comprehensive analysis is performed to quantitatively determine the
respective contributions of substorm injection and chorus waves to the electron flux enhancement around
the outer boundary of radiation belt. The generality of obtained results is further examined in the other two
events on 2 and 29 June 2013.

2. Rapid Outward Extension
2.1. Event on 26 May 2013
2.1.1. Observations
Figure 1 plots the interplanetary and magnetospheric parameters during 24–27 May 2013 provided by the
CDAweb-OMNI database. A series of interacting solar ejecta carrying intermittent southward magnetic fields
and multiple shocks successively hit the Earth’s magnetosphere. Consequently, a multistep geomagnetic
storm (with the minimum SYM-H value of −65 nT and the maximum Kp value of 5) and prolonged substorm
activity (with the maximum AE value of 1700 nT) were triggered. Our study primarily covers the time range
05:20–12:40 UT on 26 May 2013 (indicated by the yellow shadow), corresponding to the late recovery phase
of this geomagnetic storm. In this time range, the SYM-H index fluctuated around −40 nT, implying the
insignificant variation of magnetic field topology associated with the ring current development. Note that
the data gaps in the interplanetary parameters do not affect our following analysis.

Figure 2 shows the spin-averaged electron fluxes observed by the Magnetic Electron Ion
Spectrometer (MagEIS) [Blake et al., 2013] and Relativistic Electron-Proton Telescope (REPT) [Baker et al.,
2013a] of the Energetic Particle, Composition, and Thermal Plasma (ECT) suite [Spence et al., 2013]
on board the twin RBSP satellites. The two RBSP satellites were in nearly identical orbit (period ∼9 h)
but separated by about 1 h of local time. The electron fluxes around the outer boundary of radiation
belt are further plotted in Figure 3. In the inbound pass of RBSP-B (Figure 3a), the satellite encountered
the outer boundary of radiation belt at 06:00 UT (L ≈ 5.5) and the substorm injection front at 06:14 UT
(L ≈ 5.0). In the inbound pass of RBSP-A (Figure 3b), the satellite found the substorm injection front at
06:12 UT (L ≈ 6.4). The dispersionless characteristic of substorm injection [McIlwain, 1974] can be
clearly identified by RBSP-A satellite around midnight. Since the substorm injection propagated from the
magnetotail to the radiation belt region, the RBSP-A satellite at the outer region detected the injection front
approximately 2 min ahead of the RBSP-B satellite in the inner region. Thus, based on the time-distance

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,024
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Figure 1. Interplanetary and magnetospheric parameters during 24–26 May 2013: (a) interplanetary magnetic field
in the GSE coordinate system Bz ; (b) solar wind dynamic pressure Psw; (c) solar wind speed Vsw; (d–f ) geomagnetic
activity indices SYM-H, Kp, and AE. The yellow shadow denotes the time range of interest from 05:20 UT to 12:40 UT
on 26 May 2013.

relationship, the corresponding propagation speed Vs of substorm injection may be obtained Vs ≈ 74 km/s,
comparable to the estimations in the early works [Russell and McPherron, 1973; Moore et al., 1981].
Throughout the outbound pass of RBSP-B (Figure 3c), the satellite collected the smoothly varying (rather
than fluctuating) electron fluxes, indicating that the electron radiation belt had extended at least beyond
L = 6.07.

Figure 4 exhibits the VLF/ELF wave characteristics observed by the Electric and Magnetic Field Instrument
Suite and Integrated Science (EMFISIS) instrument [Kletzing et al., 2013] on board the RBSP satellites and
derived from the filter bank data [Bonnell et al., 2008] of the THEMIS-D spacecraft. The annotated frequencies
0.05 fce and 0.50 fce are estimated from the geomagnetic field model (International Geomagnetic Reference
Field (IGRF) model for the internal field and Olson-Pfitzer (OP77) model [Olson and Pfitzer, 1982] for the
external field) for the two RBSP satellites and calculated from the local magnetic field measurements for the
THEMIS-D satellite. Following the substorm injection, the two RBSP satellites found strong lower band
chorus waves (with power spectral density B2

f
up to 10−4 nT2/Hz) in the postmidnight plasma trough, intense

hiss waves in the plasmasphere, but no obvious wave activity in the premidnight plasma trough. Benefiting
from the special orbit, the THEMIS-D satellite continuously detected the strong lower band chorus waves
(with wave amplitude Bt up to 0.2 nT) in the equatorial plasma trough (5.5 < L < 9.9). These observed
distribution characteristics of VLF/ELF waves are roughly consistent with the previous statistical results [e.g.,
Meredith et al., 2001].

Figure 5 presents a snapshot of VLF/ELF waveforms recorded by EMFISIS instrument of RBSP-B around
06:22:18 UT. The fast Fourier transform was used on the waveform data to obtain the electromagnetic
spectral matrices and the corresponding electric and magnetic power spectral densities. Subsequently, the
singular value decomposition method [Santoĺık et al., 2003b] was adopted to analyze the normal angle and

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,025
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Figure 2. Evolution of the radiation belt spin-averaged electron fluxes at different energies Ek = 32 keV to 3.6 MeV
observed by (a) RBSP-B and (b) RBSP-A on 26 May 2013.

ellipticity. The discrete rising tones can be clearly identified in the magnetic and electric power spectral
densities. These waves propagated in a quasi field-aligned direction (mostly with the normal angles 𝜃 < 30◦)
and were predominantly circularly polarized (with ellipticity close to 1). These observed characteristics fit
the typical descriptions of chorus waves in the plasma trough region [e.g., Santoĺık et al., 2003a, 2014b].

Figure 6 gives the ULF wave characteristics observed by the EMFISIS instrument of the RBSP satellites in
the outer belt region. The wavelet transform [Grinsted et al., 2004] has been performed on the observed
magnetic fields to obtain the ULF wave power spectral density [Zong et al., 2009]. The overall trend of ULF
waves appeared to be roughly consistent with that of the Kp index (see Figure 1e). The ULF waves showed
a transient enhancement following the substorm injection (Kp = 4) but then kept a relatively low level of
intensity especially during the outbound passes of RBSP satellites (Kp = 1).

Based on the observations above, we propose a physical scenario to explain the rapid outward extension
of electron radiation belt. The first step is the substorm injection of electrons over a wide energy range,
and the second step is the further acceleration of electrons by chorus waves (probably excited by injected
suprathermal electrons). For example, at L = 6.0, the substorm injection directly increased the 31 keV≤
Ek ≤3.6 MeV electron fluxes by 2–4 orders of magnitude within a few minutes (the magnetotail electrons
can be accelerated to high energies in the course of injection), and then the chorus waves enhanced the
0.2 MeV≤ Ek ≤3.6 MeV electron fluxes by a factor of 2–5 in the following ∼6 h (see Figure 3). The first step is
quite evident in the observations, while the second step needs to be examined by the simulations.

It should be mentioned that the storm time buildup of electron fluxes at the center of outer radiation belt
on a timescale of days had been explained by a three-step scenario [e.g., Baker et al., 1997, 1998; Reeves
et al., 1998; Miyoshi et al., 2003; Shprits et al., 2009b], i.e., the electrons are first injected by substorms then
accelerated locally and diffused radially inward and/or outward. Here the rapid outward extension of
electron radiation belt occurred on a timescale of several hours, much shorter than that of radial diffusion
(∼days). In the time range of interest, the Kp index was small (see Figure 1e), and the RBSP-observed ULF
waves had a low level of intensity most of the time (see Figure 6). The strength of radial diffusion (evaluated
from the Kp-dependent expressions [Brautigam and Albert, 2000]) may be relatively weak, and a very limited
contribution of radial diffusion to this rapid extension event should be expected.

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,026
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Figure 3. Spin-averaged electron fluxes around the outer boundary of radiation belt on 26 May 2013: (a) RBSP-B
observations from 05:20 UT to 07:20 UT; (b) RBSP-A observations from 05:20 UT to 07:20 UT; and (c) RBSP-B
observations from 10:40 UT to 12:40 UT. The vertical dotted and dashed lines represent the locations L = 6 and
L∗ = 5.5, respectively.

2.1.2. Simulations
The chorus-driven electron acceleration process is investigated at a fixed Roederer L∗ = 5.5 (close to
L = 6.0) based on the two-dimensional storm-time evolution of electron radiation belt (STEERB) code [Xiao
et al., 2009; Su et al., 2010, 2014b]. The Roederer L∗ (provided by the Level 3 data of RBSP) is determined in
a geomagnetic field model with the IGRF internal field and OP77 external field. The basic equation for the
evolution of electron phase space density (PSD) F is given by

𝜕F
𝜕t

= 1
G

𝜕

𝜕𝛼e

[
G

(⟨D𝛼𝛼⟩ 𝜕F
𝜕𝛼e

+ ⟨D𝛼p⟩ 𝜕F
𝜕p

)]
+ 1

G
𝜕

𝜕p

[
G

(⟨Dp𝛼⟩ 𝜕F
𝜕𝛼e

+ ⟨Dpp⟩ 𝜕F
𝜕p

)]
− F

𝜏L
, (1)

with

G = p2T(𝛼e) sin 𝛼e cos 𝛼e, (2)

T(𝛼e) ≈ 1.30 − 0.56 sin 𝛼e. (3)

The wave-particle interaction efficiency is characterized by the drift-averaged diffusion coefficients ⟨D𝛼𝛼⟩,⟨Dpp⟩ and ⟨D𝛼p⟩ = ⟨Dp𝛼⟩ in the equatorial pitch angle 𝛼e, momentum p, and mixed terms. The electron

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,027
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Figure 4. VLF/ELF waves for the 26 May 2013 event: (a and b) wave magnetic power spectral density B2
f

observed by the
twin RBSP satellites and (c) wave magnetic amplitude Bt observed by the THEMIS satellite. The white lines represent the
frequencies 0.05 fce and 0.50 fce.

precipitation in the loss cone is represented by the last term −F∕𝜏L. The empirical lifetime 𝜏L is set to be a
quarter of bounce period in the loss cone (in view of the four atmospheric crossings in one bounce period)
[Selesnick et al., 2003; Shprits et al., 2009a] and be infinite out of the loss cone.

These diffusion coefficients are evaluated in the dipole geomagnetic field and controlled by the wave
distribution in frequency, normal angle, and space, as well as the ratio between the plasma frequency
fpe and equatorial electron gyrofrequency fce. Figure 7a demonstrates the frequency-dependent wave
magnetic power spectral densities (circles) observed by RBSP-A around L = 6.0 and the modeled Gaussian
frequency distribution (line)

B2
f =

2B2
t

𝜋1∕2Δf

[
erf

(
f2 − fm

𝛿f

)
+ erf

(
fm − f1

𝛿f

)]−1

exp

[
−
(

f − fm

Δf

)2
]

(4)

with an amplitude Bt = 0.147 nT, a central frequency fm = 0.156 fce, a half width Δf = 0.029 fce, a lower
limit f1 = 0.050 fce, and an upper limit f2 = 0.500 fce. The obtained wave amplitude is comparable to that
provided by the THEMIS-D satellite (see Figure 4c). The waveform data of RBSP-A are not available in the
time range of interest, and the normal angle distribution of chorus waves is obtained from the waveform

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,028
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Figure 5. A snapshot of VLF/ELF waveforms recorded by RBSP-B around 06:22:18 UT on 26 May 2013: (a) magnetic power
spectral density B2

f
; (b) electric power spectral density E2

f
; (c) wave normal angle 𝜃; and (d) ellipticity of the magnetic

field polarization. Note that the normal angle and ellipticity are shown for the waves with power spectral densities
B2

f
> 5 × 10−6 nT2 Hz.

Figure 6. ULF waves for the 26 May 2013 event: wavelet power spectrums of magnetic field observed by (a) RBSP-B and
(b) RBSP-A. Note that the blank regions correspond to the inner radiation belt.

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,029
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Figure 7. Wave characteristics and quasi-linear diffusion coefficients: (a) observed (circles) and modeled (line)
frequency-dependent magnetic power spectral density B2

f
around L = 6.0; (b) normal angle-dependent magnetic

power spectral density B2
f

(dots) in the time range from 06:00 UT to 07:00 UT and calculated (circles) and modeled (line)
occurrence rates of chorus waves in separate normal angle bins; and (c–e) drift-averaged diffusion coefficients as
functions of pitch angle 𝛼e and kinetic energy Ek .

data of RBSP-B. Figure 7b shows the normal angle-dependent magnetic power spectral density B2
f

(dots) observed by RBSP-B in the time range from 06:00 UT to 07:00 UT, the calculated occurrence rates
g(X = tan 𝜃) of chorus waves (circles) in separate normal angle bins (with width ΔX = 0.05), and the modeled
Gaussian normal angle distribution (line)

g(tan 𝜃) ∝ exp

[
−
(

tan 𝜃 − tan 𝜃m

tanΔ𝜃

)2
]

(5)

with a center 𝜃m = 0◦, a half width Δ𝜃 = 30◦, a lower cutoff 𝜃1 = 0◦, and an upper cutoff 𝜃2 = 45◦ (the
occurrence rate in the normal angles 𝜃 > 45◦ were quite small). The observed occurrence rates around
𝜃 = 0◦ tended to zero, primarily due to the drastically reduced solid angle around 𝜃 = 0◦. These chorus
waves are assumed to distribute over a wide range of latitudes |𝜆| ≤ 20◦ and magnetic local times
MLT = 23.8 − 7.0 (see Figures 4b and 4c). In these regions, the wave characteristics and the cold electron
density are assumed to be unchanged. The ratio fpe∕fce is set to be 6.2 based on the dipole magnetic field
model and the electron density model of Sheeley et al. [2001], comparable to that derived from the real-time
measurements of upper hybrid frequency [Kletzing et al., 2013] and magnetic field. The distributions of
obtained diffusion coefficients in the range of 0◦ ≤ 𝛼e ≤ 90◦ and 0.1 MeV ≤ Ek ≤ 10.0 MeV are plotted
in Figures 7c–7e. All the diffusion coefficients in the high-energy range maximize at the relatively large
equatorial pitch angles, implying a significant acceleration effect on the trapped electrons.

It should be noted that the specific values of wave parameters can change to some extent in the different
events. Here the amplitude Bt = 0.147 nT is larger than that (Bt = 0.05 nT) from statistical analysis [e.g.,
Horne et al., 2005a], smaller than that (Bt = 0.5–3 nT) in some extreme event [e.g., Cattell et al., 2008; Santoĺık
et al., 2014a; Su et al., 2014a], but generally comparable to that (Bt = 0.1–0.2 nT) for some recent event [e.g.,
Thorne et al., 2013; Li et al., 2014; Xiao et al., 2014]. The central frequency fm∕fce = 0.156 is slightly smaller
than that (fm∕fce = 0.20–0.35) in some previous works [e.g., Horne et al., 2005a; Thorne et al., 2013; Li et al.,
2014; Xiao et al., 2014] but approximately consistent with that (fm∕fce = 0.165) in our recent work [Su et al.,
2014a]. The acceleration by quasi-parallel chorus (𝜃m = 0◦) has been widely investigated in the previous
simulations [e.g., Horne et al., 2005a; Albert et al., 2009; Thorne et al., 2013; Li et al., 2014; Su et al., 2014a;

SU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,030
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Figure 8. (a) Observed (symbols) and simulated (lines) differential energy spectrums j = p2F at three different time
points and (b) the contribution percentages of chorus wave and substorm injection to the total enhancement of
energetic electron fluxes. In Figure 8a, the circles and squares represent the observations of MagEIS and REPT
instruments, and the vertical dashed lines are plotted to clearly identify the electron flux variation for those steep
energy spectrums.

Xiao et al., 2014], and the effect of oblique chorus (𝜃m > 15◦) has been emphasized in the recent works [e.g.,
Artemyev et al., 2012; Mourenas et al., 2012, 2014].

The initial PSD is written in the following form

F(𝛼e, Ek) = Fi(Ek)
(

sin 𝛼e

sin 𝛼ei

)q

, (6)

where Fi(Ek) is interpolated from the RBSP-observed PSD for the local pitch angle 𝛼 = 90◦ (the mapped
equatorial pitch angle 𝛼e = 𝛼ei) at the initial time point ti and q = 2 is the pitch angle index at L ≈ 6.0
[see Thorne et al., 2005]. The equivalent extrapolation is applied at the two pitch-angle boundaries 𝛼e = 0◦

and 90◦. The fixed boundary condition is used at Ek = 10.0 MeV, while a time-varying boundary condition

F = Fi

[
1 + t−ti

te−ti

(
Fe

Fi
− 1

)]
(Fe is the RBSP-observed PSD for the equatorial pitch angle 𝛼e = 𝛼ei at the final

time point te) is adopted at Ek = 0.1 MeV. The electrons with energies near 100 keV can be accelerated to
MeV electrons by chorus waves [Horne and Thorne, 1998; Summers et al., 1998], and the lower energy
(<100 keV) electrons can contribute to the excitation of chorus waves [e.g., Li et al., 2010; Su et al., 2014a].
For this rapid evolution event, the time step is set to be 2 s.

The comparison between RBSP-observed and STEERB-simulated differential flux spectrums j = p2F for a
fixed equatorial pitch angle 𝛼e = 40◦ at L∗ = 5.5 is presented in Figure 8a. Three colors correspond to the
three time points denoted by the vertical dashed lines in Figure 3. The local pitch angle is 𝛼 ≈ 90◦ at the
first two time points (with the latitude 𝜆 ≈ 18◦–19◦) but 𝛼 ≈ 40◦ at the third time point (with the lati-
tude 𝜆 ≈ 0◦). Before the substorm injection, the position L∗ = 5.5 was actually beyond the radiation belt
outer boundary with a quite soft energy spectrum jpre (blue). The simulation is initialized soon after the sub-
storm injection with a significantly harder energy spectrum js (cyan) and ended after about 6 h yielding the
hardest energy spectrum jsc (red). Reasonable agreement between simulation and observation can be found
at the final time point, suggesting that the modeled chorus waves are adequate to explain the “required”
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Figure 9. Observed (symbols) and simulated (lines) equatorial pitch angle-dependent differential fluxes j = p2F
at two time points. Note that the circles and squares represent the observations of MagEIS and REPT instruments.

electron acceleration after substorm injection. It should be mentioned that the simulation indeed shows the
deviation more or less from the observations (for example, at energies around 0.2 MeV and 3.6 MeV), prob-
ably caused by the inaccuracy of wave model constructed based on limited observations. Figure 8b gives
the contribution percentages of substorm injection and chorus waves to the whole event, which are directly
calculated as follows:

Ps =

{ js−jpre

jsc−jpre
, when js ≤ jsc,

1, when js > jsc,
(7)

Pc =

{
jsc−js

jsc−jpre
, when js ≤ jsc,

0, when js > jsc.
(8)

The substorm injection alone can explain the electron flux enhancement at the low energies (< 0.2 MeV).
With the energy increasing from 0.2 MeV to 5.0 MeV, the contribution percentage of substorm injection
decreased from 40% to 20%, while the contribution percentage of chorus waves increased from 60% to 80%.

The simulations here are implemented at a fixed drift shell L∗. In fact, the pitch angle distributions at a
fixed L∗ is not observable due to the drift shell splitting in an asymmetrical geomagnetic field [Horne et
al., 2003]. A “nonrigorous” comparison between the observed and simulated electron pitch angle distribu-
tions at two different time points (denoted by the vertical dashed lines in Figures 3b and 3c) is presented
in Figure 9. The electrons with 𝛼 = 90◦ at 06:35:45 UT and with 𝛼 = 40◦ at 12:38:05 UT were in the same
drift shell L∗ = 5.5, but the other electrons drifted in some different shells (depending on pitch angle and
time). At 06:35:45 UT, the observation data were detected in the off-equatorial region (𝜆≈ 18◦), and the local
pitch angles 𝛼 are mapped to the equatorial pitch angle 𝛼e through the conservation of magnetic moment
sin 𝛼e = sin 𝛼 ⋅ (Be∕B)1∕2 with the equatorial Be and local B magnetic field strength. Specifically, the local pitch
angle 𝛼 = 90◦ approximately corresponds to the equatorial pitch angle 𝛼e = 40◦ (i.e., (Be∕B)1∕2 ≈ sin 40◦).
Many observation data gaps are found to occur in the pitch angle direction, and these available observa-
tions are generally consistent with the simulations. At 12:38:05 UT, the observation data were collected
in the near-equatorial region (𝜆≈ 0.5◦), and the local pitch angles 𝛼 are assumed to equal the equatorial
pitch angle 𝛼e without any mapping. For the low-energy electrons, the observed flat pitch angle distri-
butions are approximately reproduced by the simulations except around 𝛼e = 90◦. Those bump or trough
structures around 𝛼e = 90◦ correspond to the region with nearly zero diffusion coefficients (see Figure 7).
Other physical processes, e.g., bounce resonance [Shprits, 2009], are required to diffuse the equatorially
trapped electrons. For the high-energy electrons, the simulations generally reproduce the observations at
the large pitch angles (𝛼e > 35◦) but obviously underestimate the flux enhancement at the small pitch angles
(𝛼e < 35◦). Such disagreement may be explained by the adoption of dipole field for diffusion coefficient cal-
culation and/or the absence of dayside chorus waves. The quasi-linear calculations of Orlova and Shprits
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Figure 10. (a) Geomagnetic activity indices SYM-H and AE and spin-averaged electron fluxes j observed by (b) RBSP-A
and (c) RBSP-B for the 2 June 2013 event. Note that the black dots denote the 2 MeV electron differential fluxes at three
time points.

[2010] have illustrated that the nightside chorus in the nondipole magnetic field can produce more effec-
tive diffusion of electrons with small pitch angles than that in the dipole field. As shown in many quasi-linear
simulations [Li et al., 2007; Su et al., 2009, 2011b; Xiao et al., 2009], the dayside chorus waves alone cannot
effectively energize the electrons but can diffuse the electrons from the large pitch angles toward the loss
cone. Note that the specific orbits of RBSP and THEMIS satellites during this event did not allow the direct
observations of dayside chorus waves (usually distributed in the midlatitude region 𝜆= 15◦–30◦ [Horne
et al., 2005a]).

Here we reiterate that the contributions of substorm injection and chorus waves are quantified near the
outer boundary of radiation belt (L∗ = 5.5 and L ≈ 6.0). Obviously, in the inner L∗ region, these contribution
percentages can change to some extent. We calculate the Roederer L∗ based on a geomagnetic field model
with the IGRF internal field and the OP77 external field. This field model may not accurately describe the
geomagnetic field during the substorm. The fixed L∗ perhaps corresponds to the different spatial location
L in a more realistic geomagnetic field model. However, due to the smooth behavior of the electron fluxes
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Figure 11. The same as Figure 4 except for the 2 June 2013 event.

around the last two time points (see Figure 3), the application of other geomagnetic field models would not
significantly change those contribution percentages.

2.2. Events on 2 and 29 June 2013
Figures 10 and 11 show the geomagnetic activity indices, electron fluxes, and VLF/ELF waves for the 2 June
2013 event. There were prolonged substorm and weak storm activities (with maximum AE = 1000 nT
and minimum SYM-H = −55 nT) throughout this event. The initial outer boundary of radiation belt was
around L = 6.3, detected by RBSP-B at 06:15 UT. The first substorm injection was observed by the twin
RBSP satellites around 06:35 UT (L = 6.5). After the first substorm injection, the electron fluxes showed
obvious enhancement over a wide energy range (Figures 10b and 10c), and the chorus waves were excited
in the nightside region (Figures 11a and 11b). The second substorm injection was observed around
08:25 UT (L = 6.0), causing the noticeable enhancement in both the low-energy electron fluxes and the cho-
rus wave activities. Based on the observations of RBSP-B at 06:15 UT, 08:00 UT, and 16:00 UT, we estimate the
contribution percentages of substorm injections and chorus waves to the flux enhancement at L = 6.3. The
electron flux spectrum hardened by chorus waves at L = 6.3 was not available due to the limited orbital
coverage, which is assumed to equal that at L = 6.0 in order to allow the calculation. At the low energies, the
substorm injections can still fully account for the electron flux enhancement. At the high energies, for
example, at Ek = 2.0 MeV, the first substorm injection yielded Ps = (js − jpre)∕(jsc − jpre) = 6% of the total flux
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Figure 12. The same as Figure 10 except for the 29 June 2013 event.

enhancement, and the chorus waves can be expected to produce Pc = (jsc − js)∕(jsc − jpre) = 94% of the total
flux enhancement (ignoring the effect of the second substorm injection on the high-energy electron fluxes).
This contribution percentage of chorus waves was larger than that in the 26 May 2013 event, which may be
partially explained by the extended chorus acceleration time (8 h) in the present event.

Figures 12 and 13 show the geomagnetic activity indices, electron fluxes, and VLF/ELF waves for the
29 June 2013 event. Different from the previous two events, this event had strong substorm and storm
activities (with maximum AE = 2400 nT and minimum SYM-H = −110 nT). The initial outer
boundary of radiation belt was inside L = 5.5, as observed by RBSP-B before 02:20 UT. The first substorm
injection around 02:20 UT largely increased the electron fluxes over a wide energy range (Figure 12c) and
simultaneously excited the strong chorus waves (Figure 13b). This substorm injection did not com-
pletely fill the spatial region L> 5.5, as observed by the RBSP-A satellite at 04:00 UT. In the following
time period, multiple substorm injections occurred, for example, around 06:50 UT (RBSP-A), 08:50 UT
(RBSP-B), and 10:50 UT (RBSP-B). The final outer boundary moved beyond L= 6.0, as observed by RBSP-A
at 14:50 UT. Here we simply estimate the contributions of substorm injections and chorus waves at L= 6.0
based on the observations at 08:30 UT (RBSP-B), 09:48 UT (RBSP-B), and 14:50 UT (RBSP-A). At the low
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Figure 13. The same as Figure 4 except for the 29 June 2013 event.

energies, the substorm injections were sufficient to explain the flux enhancement. At the high energies,
for example, at Ek = 2.0 MeV, the contribution percentage of the substorm injections is approximately
calculated as Ps ≈ (2js − jpre)∕(jsc −jpre) = 60% (where the ratio 2 is multiplied considering the ∼2 times flux
enhancement caused by the substorm injection at 10:50 UT), and the contribution percentage of chorus
waves is roughly considered to be Pc ≈ (jsc − 2js)∕(jsc − jpre) = 40%. The chorus waves contributed less to the
flux enhancement during the present event (compared to those in the 26 May 2013 event), which is reason-
able in view of the superposition of multiple substorm injections and the shortening of chorus acceleration
time (5 h).

In fact, the radiation belt dynamics in the last two events (involving multiple substorm injections) were
much more complex than those in the first event. As stated above, the RBSP satellites for the last two events
were not in the appropriate position to observe the electron fluxes at all the three required time points
(before the substorm injections, following the substorm injections, and after the further acceleration by
chorus waves). Considering the complexity of the two events and the imperfection of the observations,
the detailed simulations have not been implemented. Some assumptions have been made to calculate
the contribution percentages of substorm injections and chorus waves, which appear to be qualitatively
comparable to those for the first event.
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3. Conclusions and Discussions

Understanding the electron radiation belt evolution on various timescales is important for space weather
nowcasting and forecasting. The substorm injection is usually considered to produce the low-energy (up
to several hundreds keV) electron flux enhancement on a timescale of minutes [e.g., Reeves et al., 1990;
Friedel et al., 1996; Baker et al., 1997, 1998]. The chorus waves are widely believed to account for the local
acceleration of relativistic electrons on a timescale of days [e.g., Horne and Thorne, 1998; Summers et al.,
1998; Shprits et al., 2006; Fok et al., 2008; Albert et al., 2009; Su et al., 2010; Xiao et al., 2010; Fu et al., 2011].
The growing network of satellites allows an in-depth understanding of these physical processes. Recently,
the analyses of the 17 March 2013 event [Baker et al., 2014; Boyd et al., 2014; Foster et al., 2014] have
illustrated once again the importance of substorm injection of low-energy seed electrons for the buildup of
relativistic electron fluxes. The joint observations by several radially displaced satellites [Dai et al., 2014]
have shown the direct injection of relativistic electrons at the geostationary orbit during substorms. The
studies on the 9 October 2012 event [Reeves et al., 2013; Thorne et al., 2013] have demonstrated the rapid
acceleration of relativistic electrons by chorus waves within 1 day. The follow-on three-dimensional
modeling study for this event [Tu et al., 2014] has shown the importance of data-driven low-energy
boundary conditions in the radiation belt simulation.

Here we study the rapid outward extension of electron radiation belt on a timescale of several hours
and evaluate the respective contributions of substorm injections and chorus waves to the electron flux
enhancement near the outer boundary of radiation belt. We select three events observed by the RBSP and
THEMIS satellites on 26 May 2013, 2 June 2013, and 29 June 2013. A comprehensive analysis including both
observations and simulations is performed for the first event. Within about 6 h, the outer boundary of the
electron radiation belt moved from L = 5.5 to L > 6.07. At L = 6.0, the electron fluxes in the energy
range 30 keV to 5 MeV increased by up to 4 orders of magnitude. The substorm injection directly filled
the spatial region L = 5.5–6.3 with electrons over a wide energy range on a timescale of minutes, which
were sequentially captured by the two radially displaced RBSP satellites. Following the substorm injection,
the strong chorus waves were continuously detected by the RBSP and/or THEMIS satellites. These chorus
waves further hardened the injected electron spectrums within about 6 h, which are well reproduced by the
data-driven STEERB simulations. For the whole event, the flux enhancement at the low energies (< 0.2 MeV)
can be fully attributed to the substorm injection, while the flux enhancement at the high energies (0.2–5.0
MeV) can be produced by the combination of substorm injection (contribution percentage 20%–40%) and
chorus waves (contribution percentage 60%–80%). Some simple analyses are made for the other two events.
The corresponding contributions of substorm injections and chorus waves were qualitatively comparable
to those in the first event. The quantitative differences in those contribution percentages may be caused by
the extending/shortening of chorus acceleration time or the superposition of multiple substorm injections.
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