92 research outputs found

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    mRNA Display Selection of an Optimized MDM2-Binding Peptide That Potently Inhibits MDM2-p53 Interaction

    Get PDF
    p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins

    Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation

    Full text link

    Reduced thermal expansion and enhanced redox reversibility of La0.5Sr1.5Fe1.5Mo0.5O6−δ Anode material for solid oxide fuel cells

    No full text
    High performance anode materials with suitable thermal and chemical expansions are highly desirable for solid oxide fuel cells. In this work, we report a promising anode material La0.5Sr1.5Fe1.5Mo0.5O6-δ (LSFM) synthesized in nitrogen at 1050 °C. Its phase stability, mechanical behavior, redox stability, and electrochemical performance were studied. The electrical conductivity of LSFM reaches 23 S cm–1 in 5% H2–95% N2 at 800 °C with excellent reversibility over three redox cycles. After lanthanum doping, the coefficient of thermal expansion (CTE) is reduced from 17.12 × 10–6 K–1 (SF1.5M) to 15.01 × 10–6 K–1 (LSFM), and this value can be lowered further with a higher lanthanum content. Dilatometry testing at 800 °C shows that the chemical expansion behavior of LSFM is highly reversible during the oxidation–reduction cycling. These results indicate that the thermal and chemical expansion of the crystal lattice can be reduced by a stronger metal–oxygen (M–O) bond strength, leading to an improvement in redox reversibility. The polarization resistance of the LSFM symmetrical cell at 800 °C in humidified hydrogen is 0.16 Ω cm2, and the active region is ∼4.5 μm. The half-tear-drop-shaped impedance spectroscopy indicates an oxygen bulk diffusion and surface reaction colimited process. The maximum power density of the LSFM single cell reaches 1156 mW cm–2 at 800 °C within humidified H2. The new ceramic material LSFM is a promising anode for high performance solid oxide fuel cells

    Heterogeneous Glyoxal Oxidation: A Potential Source of Secondary Organic Aerosol

    No full text
    Laboratory studies are described that suggest reactive uptake of glyoxal on particulate containing HNO3 could contribute to the formation of secondary organic aerosol (SOA) in the upper troposphere (UT). Using a Knudsen cell flow reactor, glyoxal is observed to react on supercooled H2O/HNO3 surfaces to form condensed-phase glyoxylic acid. This product was verified by derivatization and GC–MS analysis. The reactive uptake coefficient, γ, of glyoxal varies only slightly with the pressure of nitric acid, from γ = 0.5 to 3.0 × 10–3 for nitric acid pressures between 10–8 and 10–6 Torr. The data do not show any dependence on temperature (181–201 K) or pressure of glyoxal (10–7 to 10–5 Torr). Using the determined reactive uptake kinetics in a simple model shows that glyoxal uptake to supercooled H2O/HNO3 may account for 4–53% of the total organic mass fraction of aerosol in the UT

    Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft

    No full text
    A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH<sub>4</sub> s<sup>–1</sup> (7.4 ± 4.2 g CH<sub>4</sub> s<sup>–1</sup> median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3–73 g CH<sub>4</sub> s<sup>–1</sup> range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere
    corecore