429 research outputs found

    Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities

    Get PDF
    Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial “games”. We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology.We gratefully acknowledge funding from the Defense Advanced Research Projects Agency (Purchase Request No. HR0011515303, Contract No. HR0011-15-C-0091), the U.S. Department of Energy (Grants DE-SC0004962 and DE-SC0012627), the NIH (Grants 5R01DE024468 and R01GM121950), the national Science Foundation (Grants 1457695 and NSFOCE-BSF 1635070), MURI Grant W911NF-12-1-0390, the Human Frontiers Science Program (grant RGP0020/2016), and the Boston University Interdisciplinary Biomedical Research Office ARC grant on Systems Biology Approaches to Microbiome Research. We also thank Dr Kirill Korolev and members of the Segre Lab for their invaluable feedback on this work. (HR0011515303 - Defense Advanced Research Projects Agency; HR0011-15-C-0091 - Defense Advanced Research Projects Agency; DE-SC0004962 - U.S. Department of Energy; DE-SC0012627 - U.S. Department of Energy; 5R01DE024468 - NIH; R01GM121950 - NIH; 1457695 - national Science Foundation; NSFOCE-BSF 1635070 - national Science Foundation; W911NF-12-1-0390 - MURI; RGP0020/2016 - Human Frontiers Science Program; Boston University Interdisciplinary Biomedical Research Office ARC)Published versio

    Influence of the dentritic morphology on electrophysiological responses of thalamocortical neurons

    Get PDF
    Les neurones thalamiques de relai ont un rôle exclusif dans la transformation et de transfert de presque toute l'information sensorielle dans le cortex. L'intégration synaptique et la réponse électrophysiologique des neurones thalamiques de relai sont déterminées non seulement par l’état du réseau impliqué, mais ils sont également contrôlés par leurs propriétés intrinsèques tels les divers canaux ioniques voltage-dépendants ainsi que l’arborisation dendritique élaboré. Par conséquent, investiguer sur le profil complexe de morphologie dendritique et sur les propriétés dendritiques actives révèle des renseignements importants sur la fonction d'entrée-sortie de neurones thalamiques de relai. Dans cette étude, nous avons reconstruit huit neurones thalamocorticaux (TC) du noyau VPL de chat adulte. En se basant sur ces données morphologiques complètes, nous avons développé plusieurs modèles multicompartimentaux afin de trouver un rôle potentiellement important des arbres dendritiques des neurones de TC dans l'intégration synaptique et l’intégration neuronale. L'analyse des caractéristiques morphologiques des neurones TC accordent des valeurs précises à des paramètres géométriques semblables ou différents de ceux publiés antérieurement. En outre, cette analyse fait ressortir de tous nouveaux renseignements concernant le patron de connectivité entre les sections dendritiques telles que l'index de l'asymétrie et la longueur de parcours moyen (c'est-à-dire, les paramètres topologiques). Nous avons confirmé l’étendue des valeurs rapportée antérieurement pour plusieurs paramètres géométriques tels que la zone somatique (2956.24±918.89 m2), la longueur dendritique totale (168017.49±4364.64 m) et le nombre de sous-arbres (8.3±1.5) pour huit neurones TC. Cependant, contrairement aux données rapportées antérieurement, le patron de ramification dendritique (avec des cas de bifurcation 98 %) ne suit pas la règle de puissance de Rall 3/2 pour le ratio géométrique (GR), et la valeur moyenne de GR pour un signal de propagation est 2,5 fois plus grande que pour un signal rétropropagé. Nous avons également démontré une variabilité significative dans l'index de symétrie entre les sous-arbres de neurones TC, mais la longueur du parcours moyen n'a pas montré une grande variation à travers les ramifications dendritiques des différents neurones. Nous avons examiné la conséquence d’une distribution non-uniforme des canaux T le long de l'arbre dendritique sur la réponse électrophysiologique émergeante, soit le potentiel Ca 2+ à seuil bas (low-threshold calcium spike, LTS) des neurones TC. En appliquant l'hypothèse du «coût minimal métabolique», nous avons constaté que le neurone modélisé nécessite un nombre minimal de canaux-T pour générer un LTS, lorsque les canaux-T sont situés dans les dendrites proximales. Dans la prochaine étude, notre modèle informatique a illustré l'étendue d'une rétropropagation du potentiel d'action et de l'efficacité de la propagation vers des PPSEs générés aux branches dendritiques distales. Nous avons démontré que la propagation dendritique des signaux électriques est fortement contrôlée par les paramètres morphologiques comme illustré par les différents paliers de polarisation obtenus par un neurone à équidistance de soma pendant la propagation et la rétropropagation des signaux électriques. Nos résultats ont révélé que les propriétés géométriques (c.-à-d. diamètre, GR) ont un impact plus fort sur la propagation du signal électrique que les propriétés topologiques. Nous concluons que (1) la diversité dans les propriétés morphologiques entre les sous-arbres d'un seul neurone TC donne une capacité spécifique pour l'intégration synaptique et l’intégration neuronale des différents dendrites, (2) le paramètre géométrique d'un arbre dendritique fournissent une influence plus élevée sur le contrôle de l'efficacité synaptique et l'étendue du potentiel d'action rétropropagé que les propriétés topologiques, (3) neurones TC suivent le principe d’optimisation pour la distribution de la conductance voltage-dépendant sur les arbres dendritiques.Thalamic relay neurons have an exclusive role in processing and transferring nearly all sensory information into the cortex. The synaptic integration and the electrophysiological response of thalamic relay neurons are determined not only by a state of the involved network, but they are also controlled by their intrinsic properties; such as diverse voltage-dependent ionic channels as well as by elaborated dendritic arborization. Therefore, investigating the complex pattern of dendritic morphology and dendritic active properties reveals important information on the input-output function of thalamic relay neurons. In this study, we reconstructed eight thalamocortical (TC) neurons from the VPL nucleus of adult cats. Based on these complete morphological data, we developed several multi-compartment models in order to find a potentially important role for dendritic trees of TC neurons in the synaptic integration and neuronal computation. The analysis of morphological features of TC neurons yield precise values of geometrical parameters either similar or different from those previously reported. In addition, this analysis extracted new information regarding the pattern of connectivity between dendritic sections such as asymmetry index and mean path length (i.e., topological parameters). We confirmed the same range of previously reported value for several geometric parameters such as the somatic area (2956.24±918.89 m2), the total dendritic length (168017.49±4364.64 m) and the number of subtrees (8.3±1.5) for eight TC neurons. However, contrary to previously reported data, the dendritic branching pattern (with 98% bifurcation cases) does not follow Rall’s 3/2 power rule for the geometrical ratio (GR), and the average GR value for a forward propagation signal was 2.5 times bigger than for a backward propagating signal. We also demonstrated a significant variability in the symmetry index between subtrees of TC neurons, but the mean path length did not show a large variation through the dendritic arborizations of different neurons. We examined the consequence of non-uniform distribution of T-channels along the dendritic tree on the prominent electrophysiological response, the low-threshold Ca2+ spike (LTS) of TC neurons. By applying the hypothesis of “minimizing metabolic cost”, we found that the modeled neuron needed a minimum number of T-channels to generate low-threshold Ca2+ spike (LTS), when T-channels were located in proximal dendrites. In the next study, our computational model illustrated the extent of an action potential back propagation and the efficacy of forward propagation of EPSPs arriving at the distal dendritic branches. We demonstrated that dendritic propagation of electrical signals is strongly controlled by morphological parameters as shown by different levels of polarization achieved by a neuron at equidistance from the soma during back and forward propagation of electrical signals. Our results revealed that geometrical properties (i.e. diameter, GR) have a stronger impact on the electrical signal propagation than topological properties. We conclude that (1) diversity in the morphological properties between subtrees of a single TC neuron lead to a specific ability for synaptic integration and neuronal computation of different dendrites, (2) geometrical parameter of a dendritic tree provide higher influence on the control of synaptic efficacy and the extent of the back propagating action potential than topological properties, (3) TC neurons follow the optimized principle for distribution of voltage-dependent conductance on dendritic trees

    Role of EKC and PHH in Determining Environment Quality and their Relation to Economic Growth of a Country

    Get PDF
    Globalization, liberalization of international trade and recent economic developments have resulted in widespread pollution and therefore degrading environment quality in many countries over the world. This study tries to examine the role of Environmental Kuznets Curve (EKC) and Pollution Haven Hypothesis (PHH) in shaping the relationship between environmental quality and the economic growth of a country. To this end, a comparative overview of developing and developed countries across the world have been evaluated for their economic growth and the resultant impact on environmental quality, and their use of EKC and PHH to determine it. Descriptive analysis is used in the estimation. Results have shown that no clear conclusion can be determined as the role of EKC and PHH varies across economies, however both the theories are evident more in case of developing countries. The environmental quality depends on whether the country is developed or developing along with the imposition of stringent regulations as well as the propensity to act on the regulations effectively

    Modeling thalamocortical cell: impact of Ca2+ channel distribution and cell geometry on firing pattern

    Get PDF
    The influence of calcium channel distribution and geometry of the thalamocortical cell upon its tonic firing and the low threshold spike (LTS) generation was studied in a 3-compartment model, which represents soma, proximal and distal dendrites as well as in multi-compartment model using the morphology of a real reconstructed neuron. Using an uniform distribution of Ca2+ channels, we determined the minimal number of low threshold voltage-activated calcium channels and their permeability required for the onset of LTS in response to a hyperpolarizing current pulse. In the 3-compartment model, we found that the channel distribution influences the firing pattern only in the range of 3% below the threshold value of total T-channel density. In the multi-compartmental model, the LTS could be generated by only 64% of unequally distributed T-channels compared to the minimal number of equally distributed T-channels. For a given channel density and injected current, the tonic firing frequency was found to be inversely proportional to the size of the cell. However, when the Ca2+ channel density was elevated in soma or proximal dendrites, then the amplitude of LTS response and burst spike frequencies were determined by the ratio of total to threshold number of T-channels in the cell for a specific geometry

    A Longitudinal Flap of Vena Cava in Live Donor a Safe Option for Adding Elongation at Least 10mm in Vein of Right Kidney

    Get PDF
    Introduction: To treat chronic kidney, kidney transplantation is the most efficient way especially when donor is alive, in such a way that survival tie can be increased in the best possible way. In this regard, major problem is short renal vein resulting in thrombosis. To elongate the vein length, there is a technique that we report in this study. Materials and Methods: The technique of interest is that at the time of dissection of vena cava and renal vein, it should be tried to put vein of vena cava 1cm above and 1cm below of renal vein. In addition, the kidney must be placed in right iliac of kidney done. Results: Patients discharged in good condition after two days. In our cases, there was no tension in the site of anastomosis showing safe condition. Conclusion: Longitudinal flap of vena cava accompanied by a suitable cuff can increase about I cm length of renal vein

    Modulation of functional network properties in major depressive disorder following electroconvulsive therapy (ECT): a resting-state EEG analysis

    Full text link
    Electroconvulsive therapy (ECT) is a highly effective neuromodulatory intervention for treatment-resistant major depressive disorder (MDD). Presently, however, understanding of its neurophysiological effects remains incomplete. In the present study, we utilised resting-state electroencephalography (RS-EEG) to explore changes in functional connectivity, network topology, and spectral power elicited by an acute open-label course of ECT in a cohort of 23 patients with treatment-resistant MDD. RS-EEG was recorded prior to commencement of ECT and again within 48 h following each patient’s final treatment session. Our results show that ECT was able to enhance connectivity within lower (delta and theta) frequency bands across subnetworks largely confined to fronto-central channels, while, conversely, more widespread subnetworks of reduced connectivity emerged within faster (alpha and beta) bands following treatment. Graph-based topological analyses revealed changes in measures of functional segregation (clustering coefficient), integration (characteristic path length), and small-world architecture following ECT. Finally, post-treatment enhancement of delta and theta spectral power was observed, which showed a positive association with the number of ECT sessions received. Overall, our findings indicate that RS-EEG can provide a sensitive measure of dynamic neural activity following ECT and highlight network-based analyses as a promising avenue for furthering mechanistic understanding of the effects of convulsive therapies

    Universality of Level Spacing Distributions in Classical Chaos

    Full text link
    We suggest that random matrix theory applied to a classical action matrix can be used in classical physics to distinguish chaotic from non-chaotic behavior. We consider the 2-D stadium billiard system as well as the 2-D anharmonic and harmonic oscillator. By unfolding of the spectrum of such matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe Poissonian behavior in the integrable case and Wignerian behavior in the chaotic case. We present numerical evidence that the action matrix of the stadium billiard displays GOE behavior and give an explanation for it. The findings present evidence for universality of level fluctuations - known from quantum chaos - also to hold in classical physics

    Detection of EpCAM-Negative and Cytokeratin-Negative Circulating Tumor Cells in Peripheral Blood

    Get PDF
    Enrichment of rare circulating tumor cells (CTCs) in blood is typically achieved using antibodies to epithelial cell adhesion molecule (EpCAM), with detection using cytokeratin (CK) antibodies. However, EpCAM and CK are not expressed in some tumors and can be downregulated during epithelial-to-mesenchymal transition. A micro-fluidic system, not limited to EpCAM or CK, was developed to use multiple antibodies for capture followed by detection using CEE-Enhanced (CE), a novel in situ staining method that fluorescently labels the capture antibodies bound to CTCs. Higher recovery of CTCs was demonstrated using antibody mixtures compared to anti-EpCAM. In addition, CK-positive breast cancer cells were found in 15 of 24 samples (63%; range 1–60 CTCs), while all samples contained additional CE-positive cells (range 1–41; median = 11; P = .02). Thus, antibody mixtures against a range of cell surface antigens enables capture of more CTCs than anti-EpCAM alone and CE staining enables the detection of CK-negative CTCs
    corecore