118 research outputs found

    Effect of school lockdown due to the COVID-19 pandemic on screen time among adolescents in Hungary: a longitudinal analysis

    Get PDF
    IntroductionStudies indicate that due to school lockdown during the Coronavirus Disease 2019 (COVID-19) pandemic, screen time increased more steeply than pre-pandemic years. The aim of our study was to examine changes in screen time and its components (screen time spent on videos, games, homework, and other activities) of adolescents affected by COVID-19 school closures compared to controls from pre-pandemic years and to assess the effect of family structure and family communication.MethodsTwo sets of ninth-grader boys and girls transitioning into 10th grade were included in the analysis. The ‘pre-COVID classes’ (controls) completed the baseline survey in February 2018 and the follow-up survey in March 2019. ‘COVID classes’ (cases) completed the baseline survey in February 2020 (1 month before the COVID-19-related school lockdowns) and the follow-up survey in March 2021. Linear mixed models stratified by sex were built to assess the change in screen time over one year adjusted for family structure and communication.ResultsOur study population consisted of 227 controls (128 girls, 99 boys) and 240 cases (118 girls, 122 boys). Without COVID-19, overall screen time did not change significantly for boys, but there was a decrease in screen time for gaming by 0.63 h, which was accompanied by an increase of 1.11 h in screen time for other activities (consisting mainly of social media and communication). Because of the pandemic, all components increased by 1.44–2.24 h in boys. Girls’ screen time and its components remained stable without school lockdown, while it increased for videos and homework by 1.66–2.10 h because of school lockdown. Living in a single-parent household was associated with higher, while better family communication resulted in lower screen time.DiscussionOur results indicate that COVID-19-related school lockdowns modified the age-specific increase in screen time for boys and girls as well. This trend, however, may be counterbalanced by improving communication between family members

    Insulin-like growth factor-1 in CNS and cerebrovascular aging

    Get PDF
    Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age

    Influence of diabetes on ambulation and inflammation in men and women with symptomatic peripheral artery disease

    Get PDF
    AbstractObjectiveTo determine whether diabetes and sex were factors associated with ambulatory function, endothelial cell inflammation, oxidative stress, and apoptosis, and with circulating biomarkers of inflammation and antioxidant capacity in patients with peripheral artery disease (PAD) and claudication.Materials/MethodsAmbulatory function of 180 symptomatic men and women with PAD was assessed during a graded maximal treadmill test, 6-minute walk test, and 4-meter walk test. Patients were further characterized on endothelial effects of circulating factors present in the sera using a cell culture-based bioassay on primary human arterial endothelial cells, and on circulating inflammatory and vascular biomarkers.ResultsMen and women with diabetes had greater prevalence (p = 0.007 and p = 0.015, respectively) of coronary artery disease (CAD) than patients without diabetes. To assure that this difference did not influence planned comparisons, the data set was stratified on CAD. Diabetic men with CAD had a lower peak walking time (PWT) during the treadmill test and a slower 4-meter gait speed compared to non-diabetic men with CAD (p < 0.05). Diabetic women with CAD had a lower PWT compared to their non-diabetic counterparts (p < 0.01). Additionally, diabetic men with CAD had higher pigment epithelium-derived factor (p < 0.05) than their non-diabetic counterparts, and diabetic women with CAD had higher leptin (p < 0.01) and interleukin-8 levels (p < 0.05).ConclusionsIn patients with PAD, diabetic men and women with CAD had more severe claudication than their non-diabetic counterparts, as measured by shorter PWT, and the men had further ambulatory impairment manifested by slower 4-meter gait speed. Furthermore, the diabetic patients with CAD had elevations in interleukin-8, leptin, and PEDF

    Resveratrol Supplementation Confers Neuroprotection in Cortical Brain Tissue of Nonhuman Primates Fed a High-Fat/Sucrose Diet

    Get PDF
    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress

    Expanding the horizon of research into the pathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition

    Get PDF
    White matter pathologies are critically involved in the etiology of vascular cognitive impairment–dementia (VCID), Alzheimer’s disease (AD), and Alzheimer’s disease and related diseases (ADRD), and therefore need to be considered a treatable target (Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793–4, [1]. To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of “The Albert Research Institute for White Matter and Cognition” in 2020. The first annual “Institute” meeting was held virtually on March 3–4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust–sponsored workshops (Barone et al. in J Transl Med 14:1–14, [2]; Sorond et al. in GeroScience 42:81–96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop

    Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The left internal mammary artery (LIMA) is the choice for grafting of the left anterior descending coronary artery (LAD). One possible mechanism of the rare graft failure involve the presence of competitive flow.</p> <p>Method</p> <p>105 patients who had undergone coronary bypass grafting between 1998 and 2000 were included in this observational study. The recatheterizations were performed 28 months after the operations. The rate of patency the LIMA grafts was determined, and the cases with graft failure were analyzed.</p> <p>Results</p> <p>The LIMA graft was patent in 99 patients (94%). Six patients (6%) exhibited diffuse involution of the graft (string sign). The string sign was always associated with competitive flow as the basis of the LIMA graft involution. In one case quantitative re-evaluation of the preoperative coronary angiography revealed merely less than 50% diameter stenosis on the LAD with a nonligated side-branch of the LIMA. At recatheterization in two patients the pressure wire measurements demonstrated only a non-significant decrease of the fractional flow reserve (0.83 and 0.89), despite the 53% and 57% diameter stenosis in the angiogram. Another patient displayeda significant regression of the LAD lesion between the pre- and postoperative coronary angiography (from 76% to 44%) as the cause of the development of the competitive flow. In one instance, a radial artery graft on the LAD during a redo bypass operation resulted in competitive flow in the radial graft due to the greater diameter than that of the LIMA. In a further patient, competitive flow developed from a short sequential part of the LIMA graft between the nonsignificantly stenosed diagonal branch and the LAD, with involution of the main part of the graft to the diagonal branch.</p> <p>Conclusions</p> <p>The most common cause of the development of the string sign of a LIMA graft due to competitive flow is overassessment of the lesion of the LAD. Regression of a previous lesion or some other neighboring graft can also cause the phenomenon.</p

    Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects

    Get PDF
    Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24- month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span

    Get PDF
    22 páginas, 4 figuras.A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.This work was supported by grants from the American Heart Association (0425834T to J.A.B. and 0435140N to A.C.) and from the NIH (RO1GM068072, AG19972, and AG19719 to D.A.S.), (HL077256 to Z.U.), (HD034089 to L.W), (2RO1 EY011733 to N.S.W.), Spanish grant (BFU2005-03017 to P.N.), and by the generous support of Mr. Paul F. Glenn and The Paul F. Glenn Laboratories for the Biological Mechanisms of Aging.Peer reviewe
    corecore