37 research outputs found

    Developmental and tissue specific changes of ubiquitin forms in Drosophila melanogaster.

    Get PDF
    In most Eukaryotes, ubiquitin either exists as free monoubiquitin or as a molecule that is covalently linked to other proteins. These two forms cycle between each other and due to the concerted antagonistic activity of ubiquitylating and deubiquitylating enzymes, an intracellular ubiquitin equilibrium is maintained that is essential for normal biological function. However, measuring the level and ratio of these forms of ubiquitin has been difficult and time consuming. In this paper, we have adapted a simple immunoblotting technique to monitor ubiquitin content and equilibrium dynamics in different developmental stages and tissues of Drosophila. Our data show that the level of total ubiquitin is distinct in different developmental stages, lowest at the larval-pupal transition and in three days old adult males, and highest in first instar larvae. Interestingly, the ratio of free mono-ubiquitin remains within 30-50% range of the total throughout larval development, but peaks to 70-80% at the larval-pupal and the pupal-adult transitions. It stays within the 70-80% range in adults. In developmentally and physiologically active tissues, the ratio of free ubiquitin is similarly high, most likely reflecting a high demand for ubiquitin availability. We also used this method to demonstrate the disruption of the finely tuned ubiquitin equilibrium by the abolition of proteasome function or the housekeeping deubiquitylase, Usp5. Our data support the notion that the ubiquitin equilibrium is regulated by tissue- and developmental stage-specific mechanisms

    The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes

    Get PDF
    Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone

    A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression

    Get PDF
    Barrier-to-Autointegration Factor (BAF) is a conserved nuclear envelope (NE) component that binds chromatin and helps its anchoring to the NE. Cycles of phosphorylation and dephosphorylation control BAF function. Entering mitosis, phosphorylation releases BAF from chromatin and facilitates NE-disassembly. At mitotic exit, PP2A-mediated dephosphorylation restores chromatin binding and nucleates NE-reassembly. Here, we show that in Drosophila a small fraction of BAF (cenBAF) associates with centromeres. We also find that PP4 phosphatase, which is recruited to centromeres by CENP-C, prevents phosphorylation and release of cenBAF during mitosis. cenBAF is necessary for proper centromere assembly and accurate chromosome segregation, being critical for mitosis progression. Disrupting cenBAF localization prevents PP2A inactivation in mitosis compromising global BAF phosphorylation, which in turn leads to its persistent association with chromatin, delays anaphase onset and causes NE defects. These results suggest that, together with PP4 and CENP-C, cenBAF forms a centromere-based mechanism that controls chromosome segregation and mitosis progression. © 2020, The Author(s)

    Microtubule Organizing Centers Contain Testis-Specific γ-TuRC Proteins in Spermatids of Drosophila

    Get PDF
    Microtubule nucleation in eukaryotes is primarily promoted by γ-tubulin and the evolutionary conserved protein complex, γ-Tubulin Ring Complex (γ-TuRC). γ-TuRC is part of the centrosome and basal body, which are the best-known microtubule-organizing centers. Centrosomes undergo intensive and dynamic changes during spermatogenesis, as they turn into basal bodies, a prerequisite for axoneme formation during spermatogenesis. Here we describe the existence of a novel, tissue-specific γ-TuRC in Drosophila. We characterize three genes encoding testis-specific components of γ-TuRC (t-γ-TuRC) and find that presence of t-γ-TuRC is essential to male fertility. We show the diverse subcellular distribution of the t-γ-TuRC proteins during post-meiotic development, at first at the centriole adjunct and then also on the anterior tip of the nucleus, and finally, they appear in the tail region, close to the mitochondria. We also prove the physical interactions between the t-γ-TuRC members, γ-tubulin and Mozart1. Our results further indicate heterogeneity in γ-TuRC composition during spermatogenesis and suggest that the different post-meiotic microtubule organizing centers are orchestrated by testis-specific gene products, including t-γ-TuRC

    A bipartite NLS motif mediates the nuclear import of Drosophila moesin

    Get PDF
    The ERM protein family, which consists of three closely related proteins in vertebrates, ezrin, radixin, and moesin (ERM), is an ancient and important group of cytoplasmic actin-binding and organizing proteins. With their FERM domain, ERMs bind various transmembrane proteins and anchor them to the actin cortex through their C-terminal F-actin binding domain, thus they are major regulators of actin dynamics in the cell. ERMs participate in many fundamental cellular processes, such as phagocytosis, microvilli formation, T-cell activation and tumor metastasis. We have previously shown that, besides its cytoplasmic activities, the single ERM protein of Drosophila melanogaster, moesin, is also present in the cell nucleus, where it participates in gene expression and mRNA export. Here we study the mechanism by which moesin enters the nucleus. We show that the nuclear import of moesin is an NLS-mediated, active process. The nuclear localization sequence of the moesin protein is an evolutionarily highly conserved, conventional bipartite motif located on the surface of the FERM domain. Our experiments also reveal that the nuclear import of moesin does not require PIP2 binding or protein activation, and occurs in monomeric form. We propose, that the balance between the phosphorylated and non-phosphorylated protein pools determines the degree of nuclear import of moesin
    corecore