37 research outputs found

    Mikro RNS alapú génszabályozás mechanizmusának vizsgálata növényekben = Characterization of the mechanism of miRNA controlled gene expression in plants

    Get PDF
    A vírusfertőzési folyamatok tanulmányozása során kimutatható volt az AGO1 mRNS és a miR168 expressziójának emelkedése. Különböző növény-vírus interakciókat vizsgálva kimutattuk, hogy az AGO1 mRNS a gazda védekezési reakciójának következtében nő meg, míg a megemelkedett miR168 szint, mely térben átfed a vírus által elfoglalt növényi szektorokkal, a vírus ellentámadásának a következménye. Kimutattuk, hogy a miR168 indukció a miR168 prekurzor molekula megnőtt expressziójának és felgyorsult érésének az eredménye. Eredményeink szerint a megemelkedett miR168 szint transzlációsan gátolja az AGO1 mRNS-t, így a növényben az AGO1 fehérje szintje lecsökken. A növények géncsendesítés alapú védekező válaszának elkerülésére a vírusok különböző szupresszor molekulákat fejlesztettek ki, melyek ezt a folyamatot más-más szinten képesek gátolni. Az általunk tranziens rendszerben vizsgált különböző silencing szupresszorok minden esetben indukálták a miR168 termelődését. Ezek szerint a különböző silencing szupresszorok speciális hatásuk mellett egy univerzális mechanizmussal is gátolják a növény védekező folyamatait: a miR168 szintjének megelelésével gátolják az AGO1 fehérje akkumulációját és így aktivitását. | Virus infections induce the expression of ARGONAUTE1 (AGO1) mRNA and in parallel enhance the accumulation of miR168 (regulator of AGO1 mRNA). Here we show that in virus infected plants the enhanced expression of AGO1 mRNA is not accompanied by increased AGO1 protein accumulation. We also demonstrate that the induction of AGO1 mRNA level is a part of the host defence reaction while the induction of miR168, which overlaps spatially with virus-occupied sectors, is mediated mainly by the Tombusvirus p19 RNA silencing suppressor. The absence of p19 results in the elimination of miR168 induction and accompanied with the enhanced accumulation of AGO1 protein. In transient expression study p19 mediates the induction of miR168 and the down regulation of endogenous AGO1 level. P19 is not able to efficiently bind miR168 in virus infected plants indicating that this activity is uncoupled from the small RNA binding capacity of p19. Our results imply that plant viruses can inhibit the translational capacity of AGO1 mRNA by modulating the endogenous miR168 level to alleviate the anti-viral function of AGO1 protein

    Növényvírusok replikációjában, a tünet kialakulásában és a növény védekezési rendszerében szerepet játszó gazdagének azonosítása és vizsgálata = Identification and analyses of altered patterns of gene expression in compatible host elicited by plant virus infection

    Get PDF
    Az poszt-transzkripcionális gén csendesítés (PTGS) egy hatékony antivirális védekezési rendszer növényekben. Adataink azt mutatták, hogy amíg a vad típusú vírus (CymRSV) az egész növényt megfertőzi addig a p19 (a vírus PTGS szuppresszor fehérjéje) deficiens vírus felhalmozódása csak az erekre és azok környékére korlátozódik. Ezek az eredmények arra utaltak, hogy a p19 képes megakadályozni a PTGS mobil szignál által kiváltott aktiválódását a fertőzési front előtt, előidézve a növény általános fertőzöttségét. Továbbiakban, azonosítottuk a PTGS alapvető szerepét a DI RNS mediálta tünet csökkentésben. Adataink megmutatták a PTGS asszociált 21nt siRNS-sek szerepét a szisztemikus szignalizációs eseményekben. Azonosítottuk a DI RNS-ek 5' végi szakaszát mint a tünet módosításban szerepet játszó legfontosabb régiót. Létrehoztunk egy Arabidopsis protoplaszton alapuló szinkronizált infekciós rendszert és azonosítottunk egy endogén gént, amely teljes "shut off"-t mutat vírus fertőzött növényben. Módisított LNA oligonukleotidok felhasználásával létrehoztunk egy olyan érzékeny kis RNS detektálási rendszert, amely lehetővé teszi a vírus ertőzésben szerepet játszó miRNS-ek kimutatását mind northern blot analízissel mind in situ hibridizációval. | In plants post-transcriptional gene silencing (PTGS) is an ancient and effective defense mechanism against virus infection. We showed that in contrast to the uniform accumulation of CymRSV throughout systemically infected leaves, the presence of p19 (PTGS suppressor of the virus) deficient virus was confined to and around the vascular bundles. These results suggest that the role of p19 is to prevent the onset of mobile signal induced systemic PTGS ahead the virus infection front leading to generalized infection. We also showed that the activation of PTGS plays a pivotal role in DI RNA-mediated interference. Our data identified the pivotal role of 21 nt siRNAs in PTGS signaling. In addition we identified a 5' proximal sequence element of DI RNAs as the most important symptom determinant region. We established a Arabidopsis protoplast based synchronized infection system and identified an endogenous gene showing complete shut off in virus infected plants. Moreover, we enhanced the sensitivity of detecting mature microRNAs by LNA modified oligonucleotides probes, which may open the way of northern blot and in situ detection of miRNAs playing important in symptom development

    Az RNS silencing mechanizmusának vizsgálata állati és növényi modelleken = Mechanism of RNS silencing in animal and plant model organism

    Get PDF
    A Cymbidium ringspot vírussal fertőzött növényekből származó kis RNS-ek analízise során azt találtuk, hogy a virális kis RNS-ek a genom kitüntetett helyeiről keletkeznek és a a virális kis RNS-ek 80%-a a pozitív, 20%-a a negatív szálról képződik. Ez az arány megegyezik a genomi RNS-ek szálarányával. Eredményeinkből az következik, hogy a virális kis RNS-ek nem a virus ds replikatív intermedierjéről, hanem az egyszálú genomi RNS-ek másodlagos szerkezettel rendelkező régióiról keletkeznek. Az RNS silencing szupresszorokkal végzett munkánk alapján megállapítottuk, hogy a vizsgált virális szupresszorok mind a növényi, mind az állati rendszerekben a kis RNS-ek megkötésével gátolják a RISC komplexek, ezáltal a si- és miRNS indukálta RNS silencing kialakulását. Mivel az általunk vizsgált vírusok taxonómiailag különböző családokba sorolhatók, ezért azt a következtetés is levonhatjuk, hogy a siRNS kötésen alapuló RNS silencing gátlás egy széleskörűen elterjedt RNS silencing szupressziós stratégia. Jól jellemzett kis RNS kötő RNS silencing szupresszorral rendelkező vírusok hatását vizsgáltuk a a kis RNS-ek 3 vessző vég metilációjára. Eredményeink azt mutatják, hogy a TEV HCPro hatékonyan, míg a CIRV p19 kevéssé gátolja meg a virális siRNS-ek és bizonyos endogén miRNS-ek 3 vessző végének metilációját. Sejtfrakcionálásos eredményeink alapján feltételezhetjük, hogy a kis RNS-ek metilációja nemcsak a sejtmagban, hanem a citoplazmában is bekövetkezhet. | A survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot virus showed that viral siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that viral siRNAs derived from highly structured regions of the single stranded viral genome, rather than the ds replicative intermedier. Analyzing several silencing suppressors representing different families of viruses showed that each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among these proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. We investigated the 3' modification of silencing-related small RNAs in plants infected with viruses expressing small RNA silencing suppressors. We found that CIRV had only a slight effect on viral siRNA 3' modification, but TEV significantly inhibited the 3' modification of si/miRNAs. This suggests that the 3' modification of viral siRNAs occurs in the cytoplasm, though miRNA 3' modification likely takes place in the nucleus as well

    Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley (Hordeum vulgare L.)

    Get PDF
    Barley (Hordeum vulgare L.) is an economically important crop cultivated in temperate climates all over the world. Adverse environmental factors negatively affect its survival and productivity. RNA silencing is a conserved pathway involved in the regulation of growth, development and stress responses. The key components of RNA silencing are the Dicer-like proteins (DCLs), Argonautes (AGOs) and RNA-dependent RNA polymerases (RDRs). Despite its economic importance, there is no available comprehensive report on barley RNA silencing machinery and its regulation. In this study, we in silico identified five DCL (HvDCL), eleven AGO (HvAGO) and seven RDR (HvRDR) genes in the barley genome. Genomic localization, phylogenetic analysis, domain organization and functional/catalytic motif identification were also performed. To understand the regulation of RNA silencing, we experimentally analysed the transcriptional changes in response to moderate, persistent or gradient heat stress treatments: transcriptional accumulation of siRNA- but not miRNA-based silencing factor was consistently detected. These results suggest that RNA silencing is dynamically regulated and may be involved in the coordination of development and environmental adaptation in barley. In summary, our work provides information about barley RNA silencing components and will be a ground for the selection of candidate factors and in-depth functional/mechanistic analyses

    Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences

    Get PDF
    Viruses have different strategies for infecting their hosts. Fast and acute infections result in the development of severe symptoms and may cause the death of the plant. By contrast, in a persistent interaction, the virus can survive within its host for a long time, inducing only mild symptoms. In this study, we investigated the gene expression changes induced in CymRSV-, crTMV-, and TCV-infected Nicotiana benthamiana and in PVX- and TMV-U1-infected Solanum lycopersicum plants after the systemic spread of the virus by two different high-throughput methods: microarray hybridization or RNA sequencing. Using these techniques, we were able to clearly differentiate between acute and persistent infections. We validated the gene expression changes of selected genes by Northern blot hybridization or by qRT-PCR. We show that, in contrast to persistent infections, the drastic shut-off of housekeeping genes, downregulation of photosynthesis-related transcripts and induction of stress genes are specific outcomes with acute infections. We also show that these changes are not a consequence of host necrosis or the presence of a viral silencing suppressor. Thermal imaging data and chlorophyll fluorescence measurements correlated very well with the molecular changes. We believe that the molecular and physiological changes detected during acute infections mostly contribute to virus symptom development. The observed characteristic physiological changes associated with economically more dangerous acute infections could serve as a basis for the elaboration of remote monitoring systems suitable for detecting developing virus infections in crops. Moreover, as molecular and physiological changes are characteristics of different types of virus lifestyles, this knowledge can support risk assessments of recently described novel viruses

    In Situ Characterization of Cymbidium Ringspot Tombusvirus Infection-Induced Posttranscriptional Gene Silencing in Nicotiana benthamiana

    No full text
    In plants, posttranscriptional gene silencing (PTGS) is an ancient and effective defense mechanism against viral infection. A number of viruses encode proteins that suppress virus-activated PTGS. The p19 protein of tombusviruses is a potent PTGS suppressor which interferes with the onset of PTGS-generated systemic signaling and is not required for viral replication or for viral movement in Nicotiana benthamiana. This unique feature of p19 suppressor allowed us to analyze the mechanism of PTGS-based host defense and its viral suppression without interfering with other viral functions. In contrast to the necrotic symptoms caused by wild-type tombusvirus, the infection of p19-defective mutant virus results in the development of a typical PTGS-associated recovery phenotype in N. benthamiana. In this report we show the effect of PTGS on the viral infection process for N. benthamiana infected with either wild-type Cymbidium Ringspot Tombusvirus (CymRSV) or a p19-defective mutant (Cym19stop). In situ analyses of different virus-derived products revealed that PTGS is not able to reduce accumulation of virus in primary infected cells regardless of the presence of p19 PTGS suppressor. We also showed that both CymRSV and Cym19stop viruses move systemically in the vasculature, with similar efficiencies. However, in contrast to the uniform accumulation of CymRSV throughout systemically infected leaves, the presence of Cym19stop virus was confined to and around the vascular bundles. These results suggest that the role of p19 is to prevent the onset of mobile signal-induced systemic PTGS ahead of the viral infection front, leading to generalized infection
    corecore