199 research outputs found

    ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer

    Get PDF
    Citation: Duhachek-Muggy, S., & Zolkiewska, A. (2015). ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. Bmc Cancer, 15, 13. doi:10.1186/s12885-015-1108-1ADAM12-L and ADAM12-S represent two major splice variants of human metalloproteinase-disintegrin 12 mRNA, which differ in their 3'-untranslated regions (3' UTRs). ADAM12-L, but not ADAM12-S, has prognostic and chemopredictive values in breast cancer. Expression levels of the two ADAM12 splice variants in clinical samples are highly discordant, suggesting post-transcriptional regulation of the ADAM12 gene. The miR-29, miR-30, and miR-200 families have potential target sites in the ADAM12-L 3' UTR and they may negatively regulate ADAM12-L expression. Methods: miR-29b/c, miR-30b/d, miR-200b/c, or control miRNA mimics were transfected into SUM159PT, BT549, SUM1315MO2, or Hs578T breast cancer cells. ADAM12-L and ADAM12-S mRNA levels were measured by qRT-PCR, and ADAM12-L protein was detected by Western blotting. Direct targeting of the ADAM12-L 3' UTR by miRNAs was tested using an ADAM12-L 3' UTR luciferase reporter. The rate of ADAM12-L translation was evaluated by metabolic labeling of cells with S-35 cysteine/methionine. The roles of endogenous miR-29b and miR-200c were tested by transfecting cells with miRNA hairpin inhibitors. Results: Transfection of miR-29b/c mimics strongly decreased ADAM12-L mRNA levels in SUM159PT and BT549 cells, whereas ADAM12-S levels were not changed. ADAM12-L, but not ADAM12-S, levels were also significantly diminished by miR-200b/c in SUM1315MO2 cells. In Hs578T cells, miR-200b/c mimics impeded translation of ADAM12-L mRNA. Importantly, both miR-29b/c and miR-200b/c strongly decreased steady state levels of ADAM12-L protein in all breast cancer cell lines tested. miR-29b/c and miR-200b/c also significantly decreased the activity of an ADAM12-L 3' UTR reporter, and this effect was abolished when miR-29b/c and miR-200b/c target sequences were mutated. In contrast, miR-30b/d did not elicit consistent and significant effects on ADAM12-L expression. Analysis of a publicly available gene expression dataset for 100 breast tumors revealed a statistically significant negative correlation between ADAM12-L and both miR-29b and miR-200c. Inhibition of endogenous miR-29b and miR-200c in SUM149PT and SUM102PT cells led to increased ADAM12-L expression. Conclusions: The ADAM12-L 3' UTR is a direct target of miR-29 and miR-200 family members. Since the miR-29 and miR-200 families play important roles in breast cancer progression, these results may help explain the different prognostic and chemopredictive values of ADAM12-L and ADAM12-S in breast cancer

    Characterization of NAD:arginine ADP-ribosyltransferases.

    Get PDF
    NAD:arginine mono-ADP-ribosyltransferases catalyze the transfer of ADP-ribose from NAD to the guanidino group of arginine on a target protein. Deduced amino acid sequences of one family (ART1) of mammalian ADP-ribosyltransferases, cloned from muscle and lymphocytes, show hydrophobic amino and carboxyl termini consistent with glycosylphosphatidylinositol (GPI)-anchored proteins. The proteins, overexpressed in mammalian cells transfected with the transferase cDNAs, are released from the cell surface with phosphatidylinositol-specific phospholipase C (PI-PLC), and display immunological and biochemical characteristics consistent with a cell surface, GPI-anchored protein. In contrast, the deduced amino acid sequence of a second family (ART5) of transferases, cloned from murine lymphoma cells and expressed in high abundance in testis, displays a hydrophobic amino terminus, consistent with a signal sequence, but lacks a hydrophobic signal sequence at its carboxyl terminus, suggesting that the protein is destined for export. Consistent with the surface localization of the GPI-linked transferases, multiple surface substrates have been identified in myotubes and activated lymphocytes, and, notably, include integrin alpha subunits. Similar to the bacterial toxin ADP-ribosyltransferases, the mammalian transferases contain the characteristic domains involved in NAD binding and ADP-ribose transfer, including a highly acidic region near the carboxy terminus, which, when disrupted by in vitro mutagenesis, results in a loss of enzymatic activity. The carboxyl half of the protein, synthesized as a fusion protein in E. coli, possessed NADase, but not ADP-ribosyltransferase activity. These findings are consistent with the existence at the carboxyl terminus of ART1 of a catalytically active domain, capable of hydrolyzing NAD, but not of transferring ADP-ribose to a guanidino acceptor

    The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading

    Get PDF
    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the cys-teine-rich domain made in Escherichia coli (rADAM 12-cys), the disintegrin-like and cysteine-rich domain made in insect cells (rADAM 12-DC), and full-length human ADAM 12-S tagged with green fluorescent protein made in mammalian cells (rADAM 12-GFP). Mesenchymal cells specifically and in a dose-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin β1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and chondroblasts lacking β1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain–mediated cell adhesion, and then the β1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn2+ or the β1 integrin–activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12–syndecan complex fails to modulate the function of β1 integrin

    ADP-ribosylation of arginine

    Get PDF
    Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field

    Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

    Get PDF
    Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena

    Activation of the P2X7 ion channel by soluble and covalently bound ligands

    Get PDF
    The homotrimeric P2X7 purinergic receptor has sparked interest because of its capacity to sense adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) released from cells and to induce calcium signaling and cell death. Here, we examine the response of arginine mutants of P2X7 to soluble and covalently bound ligands. High concentrations of ecto-ATP gate P2X7 by acting as a soluble ligand and low concentrations of ecto-NAD gate P2X7 following ADP-ribosylation at R125 catalyzed by toxin-related ecto-ADP-ribosyltransferase ART2.2. R125 lies on a prominent cysteine-rich finger at the interface of adjacent receptor subunits, and ADP-ribosylation at this site likely places the common adenine nucleotide moiety into the ligand-binding pocket of P2X7

    Extracellular NAD and ATP: Partners in immune cell modulation

    Get PDF
    Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response

    Role of ADAM and ADAMTS metalloproteinases in airway diseases

    Get PDF
    Lungs are exposed to the outside environment and therefore to toxic and infectious agents or allergens. This may lead to permanent activation of innate immune response elements. A Disintegrin And Metalloproteinases (ADAMs) and ADAMs with Thrombospondin motifs (ADAMTS) are proteinases closely related to Matrix Metalloproteinases (MMPs). These multifaceted molecules bear metalloproteinase and disintegrin domains endowing them with features of both proteinases and adhesion molecules. Proteinases of the ADAM family are associated to various physiological and pathological processes and display a wide spectrum of biological effects encompassing cell fusion, cell adhesion, "shedding process", cleavage of various substrates from the extracellular matrix, growth factors or cytokines... This review will focus on the putative roles of ADAM/ADAMTS proteinases in airway diseases such as asthma and COPD

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes
    corecore