11 research outputs found

    SV Cen reveals its mystery

    Full text link
    Our very-first high resolution spectra of SV Cen close binary system obtained in the H alpha line reveal its absorption and emmision components, changing with orbital phase. An accretion disk surrounding the component eclipsed at the primary minimum is the most plausible explanation of this complex structure.Comment: To appear in ASP Conference Series special issue: "Binaries: Key to Comprehension of the Universe

    A study of contact binaries with large temperature differencies between components

    Full text link
    We present an extensive analysis of new light and radial-velocity (RV) curves, as well as high-quality broadening-function (BF) profiles of twelve binary systems for which a contact configuration with large temperature differencies between components has been reported in the literature. We find that six systems (V1010 Oph, WZ Cyg, VV Cet, DO Cas, FS Lup, V747 Cen) have near-contact configurations. For the remaining systems (CX Vir, FT Lup, BV Eri, FO Hya, CN And, BX And), our solutions of the new observations once again converge in a contact configuration with large temperature differencies between the components. However, the bright regions discovered in the BFs for V747 Cen, CX Vir, FT Lup, BV Eri, FO Hya, and CN And, and further attributed to hot spots, shed new light on the physical processes taking place between the components and imply the possibility that the contact configurations obtained from light- and RV-curve modelling are a spurious result.Comment: Submited to Acta Astronomic

    Determination of characteristics of newly discovered eclipsing binary 2MASS J18024395 +4003309 = VSX J180243.9+400331

    Get PDF
    During processing the observations of the intermediate polar 1RXS J180340.0+401214, obtained 26.05.2012 at the 60-cm telescope of the Mt. Suhora observatory (Krakow, Poland), variability of 2MASS J18024395+4003309 was discovered. As this object was not listed in the "General Catalogue of Variable Stars" or "Variable Stars Index", we registered it as VSX J180243.9+400331. Additionally we used 189 separate observations from the Catalina Sky Survey spread over 7 years. The periodogram analysis yields the period of 0d.3348837{\pm}0d.0000002.The object was classified as the Algol-type eclipsing binary with a strong effect of ellipticity. The depths of the primary and secondary minima are nearly identical, which corresponds to a brightness (and maybe) mass ratio close to 1. The statistically optimal degree of the trigonometric polynomial n=4. The most recent minimum occurred at HJD 2456074.4904. The brightness range from our data is 16.56-17.52 (V), 16.18-17.08 (R). The NAV ("New Algol Variable") algorithm was applied for statistically optimal phenomenological modeling and determination of corresponding parameters

    A photometric and spectroscopic study of WW And - an Algol-type, long period binary system with an accretion disc

    Full text link
    We have analyzed the available spectra of WW And and for the first time obtained a reasonably well defined radial velocity curve of the primary star. Combined with the available radial velocity curve of the secondary component, these data led to the first determination of the spectroscopic mass ratio of the system at q-spec = 0.16 +/- 0.03. We also determined the radius of the accretion disc from analysis of the double-peaked H-alpha emission lines. Our new, high-precision, Johnson VRI and the previously available Stromgren vby light curves were modelled with stellar and accretion disc models. A consistent model for WW And - a semidetached system harbouring an accretion disc which is optically thick in its inner region, but optically thin in the outer parts - agrees well with both spectroscopic and photometric data.Comment: Accepted by New Astronom

    Insights into the inner regions of the FU Orionis disc

    Get PDF
    Context. We investigate small-amplitude light variations in FU Ori occurring in timescales of days and weeks. Aims. We seek to determine the mechanisms that lead to these light changes. Methods. The visual light curve of FU Ori gathered by the MOST satellite continuously for 55 days in the 2013-2014 winter season and simultaneously obtained ground-based multi-colour data were compared with the results from a disc and star light synthesis model. Results. Hotspots on the star are not responsible for the majority of observed light variations. Instead, we found that the long periodic family of 10.5-11.4 d (presumably) quasi-periods showing light variations up to 0.07 mag may arise owing to the rotational revolution of disc inhomogeneities located between 16-20 solar radii. The same distance is obtained by assuming that these light variations arise because of a purely Keplerian revolution of these inhomogeneities for a stellar mass of 0.7 solar mass. The short-periodic (3-1.38 d) small amplitude (0.01 mag) light variations show a clear sign of period shortening, similar to what was discovered in the first MOST observations of FU Ori. Our data indicate that these short-periodic oscillations may arise because of changing visibility of plasma tongues (not included in our model), revolving in the magnetospheric gap and/or likely related hotspots as well. Conclusions. Results obtained for the long-periodic 10-11 d family of light variations appear to be roughly in line with the colour-period relation, which assumes that longer periods are produced by more external and cooler parts of the disc. Coordinated observations in a broad spectral range are still necessary to fully understand the nature of the short-periodic 1-3 d family of light variations and their period changes.Comment: Accepted to A&

    Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287

    Get PDF
    Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling of the secondary BH trajectory around the primary BH and its accretion disk. The expected flare was termed the Eddington flare to commemorate the centennial celebrations of now-famous solar eclipse observations to test general relativity by Sir Arthur Eddington. We analyze the multi-epoch Spitzer observations of the expected flare between 2019 July 31 and 2019 September 6, as well as baseline observations during 2019 February-March. Observed Spitzer flux density variations during the predicted outburst time display a strong similarity with the observed optical pericenter flare from OJ 287 during 2007 September. The predicted flare appears comparable to the 2007 flare after subtracting the expected higher base-level Spitzer flux densities at 3.55 and 4.49 μ\mum compared to the optical R-band. Comparing the 2019 and 2007 outburst lightcurves and the previously calculated predictions, we find that the Eddington flare arrived within 4 hours of the predicted time. Our Spitzer observations are well consistent with the presence of a nano-Hertz gravitational wave emitting spinning massive binary BH that inspirals along a general relativistic eccentric orbit in OJ 287. These multi-epoch Spitzer observations provide a parametric constraint on the celebrated BH no-hair theorem.Comment: 8 pages, 4 figures, 1 table, to appear in ApJ

    Polarization and Spectral Energy Distribution in OJ 287 during the 2016/17 Outbursts

    Get PDF
    We report optical photometric and polarimetric observations of the blazar OJ 287 gathered during 2016/17. The high level of activity, noticed after the General Relativity Centenary flare, is argued to be part of the follow-up flares that exhibited high levels of polarization and originated in the primary black hole jet. We propose that the follow-up flares were induced as a result of accretion disk perturbations, traveling from the site of impact towards the primary SMBH. The timings inferred from our observations allowed us to estimate the propagation speed of these perturbations. Additionally, we make predictions for the future brightness of OJ 287.</p

    Insights into the inner regions of the FU Orionis disc

    No full text
    Context. We investigate small-amplitude light variations in FU Ori occurring in timescales of days and weeks
    corecore