12 research outputs found

    Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    No full text
    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process. Keywords: TiO2 nanotubes, Anodization, Electrolyte, Band ga

    Investigations on tailoring physical properties of RF magnetron sputtered Cadmium Sulphide thin films

    No full text
    The effect of nitrogen (N2) partial pressure on the structure and bandgap tunability of RF magnetron sputtered Cadmium Sulphide (CdS) thin films is investigated by varying N2 partial pressure in Ar/N2 mixture. In presence of N2, films have a polycrystalline structure with (002) preferential orientation, which leads to defect-free, continuous, dense, and fibrous structures with increased roughness. The average optical transmittance increased to > 80 at 500–2500 nm for 30 % N2 partial pressure, whereas the band gap decreases from 2.45 eV to 2.30 eV with increasing N2 concentration. This work shows that the bandgap of sputtered CdS thin films can be tuned with the variation of N2 concentration for customized applications

    Fabrication and characterization of Al/Ta thin films as metal junctions for solar cell applications

    No full text
    In the present work, the effect of deposition time (10 min, 20 min, and 30 min) on the structural, morphological, and electrical properties of Al/Ta thin films has been investigated. The XRD and microscopy results revealed that the thin films exhibit a bcc structure, with a strong (110) preferred orientation and followed a columnar growth with grain sizes lower than 100 nm. Thin film with 20-min deposition time exhibits less average roughness and better morphology than 10-min and 30-min. Further, the average resistance was smallest for thin films with 20-min of deposition time along with the optical reflectance between 50 and 85% in wavelength region of 400–1000 nm. The Al/Ta thin film can be employed as an excellent back-contact material for thinfilm solar cells due to its improved crystallinity, reflectance, and lower resistivity

    Evolution of Electronic Structure in Atomically Thin Sheets of WS<sub>2</sub> and WSe<sub>2</sub>

    No full text
    Geometrical confinement effect in exfoliated sheets of layered materials leads to significant evolution of energy dispersion in mono- to few-layer thickness regime. Molybdenum disulfide (MoS<sub>2</sub>) was recently found to exhibit indirect-to-direct gap transition when the thickness is reduced to a single monolayer. Emerging photoluminescence (PL) from monolayer MoS<sub>2</sub> opens up opportunities for a range of novel optoelectronic applications of the material. Here we report differential reflectance and PL spectra of mono- to few-layer WS<sub>2</sub> and WSe<sub>2</sub> that indicate that the band structure of these materials undergoes similar indirect-to-direct gap transition when thinned to a single monolayer. The transition is evidenced by distinctly enhanced PL peak centered at 630 and 750 nm in monolayer WS<sub>2</sub> and WSe<sub>2</sub>, respectively. Few-layer flakes are found to exhibit comparatively strong indirect gap emission along with direct gap hot electron emission, suggesting high quality of synthetic crystals prepared by a chemical vapor transport method. Fine absorption and emission features and their thickness dependence suggest a strong effect of Se p-orbitals on the d electron band structure as well as interlayer coupling in WSe<sub>2</sub>
    corecore