246 research outputs found

    Hospital case volume and outcomes for proximal femoral fractures in the USA: an observational study

    Get PDF
    Objective: To explore whether older adults with isolated hip fractures benefit from treatment in high-volume hospitals. Design: Population-based observational study. Setting: All acute hospitals in California, USA. Participants: All individuals aged >65 that underwent an operation for an isolated hip fracture in California between 2007 and 2011. Patients transferred between hospitals were excluded. Primary and secondary outcomes: Quality indicators (time to surgery) and patient outcomes (length of stay, in-hospital mortality, unplanned 30-day re-admission, and selected complications). Results: 91,401 individuals satisfied the inclusion criteria. Time to operation and length of stay were significantly prolonged in low volume hospitals, by 1.96 (95% CI 1.20-2.73) and 0.70 (0.38-1.03) days respectively. However, there were no differences in clinical outcomes, including in-hospital mortality, 30-day re-admission, and rates of pneumonia, pressure ulcers, and venous thromboembolism. Conclusion: These data suggest that there is no patient safety imperative to limit hip fracture care to high-volume hospitals

    Band-Gap Nonlinearity in Lead Chalcogenide (PbQ, Q = Te, Se, S) Alloys

    Get PDF
    Narrow band-gap lead chalcogenides have been developed for several optical and electronic applications. However, band-gap energies of the ternary and quaternary alloys have received little attention compared with the parent binary phases. Here, we have fabricated single-phase ternary (PbTe)1−x(PbSe)x and quaternary (PbTe)0.9−y(PbSe)0.1(PbS)y and (PbTe)0.65−z(PbSe)0.35(PbS)z alloys and shown that although lattice parameters follow Vegard’s law as a function of composition, the bandgap energies exhibit a substantial bowing effect. The ternary (PbTe)1−x(PbSe)x system features a smaller bowing parameter predominantly due to the difference in electronegativity between Se and Te, whereas the larger bowing parameters in quaternary alloys are generated from a larger crystal lattice mismatch and larger miscibility gap. These findings can lead to further advances in tuning the band-gap and lattice parameters for optical and electronic applications of lead chalcogenides

    A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures

    Get PDF
    Change detection and deformation monitoring is an active area of research within the field of engineering surveying as well as overlapping areas such as structural and civil engineering. The application of Terrestrial Laser Scanning (TLS) techniques for change detection and deformation monitoring of concrete structures has increased over the years as illustrated in the past studies. This paper presents a review of literature on TLS application in the monitoring of structures and discusses registration and georeferencing of TLS point cloud data as a critical issue in the process chain of accurate deformation analysis. Past TLS research work has shown some trends in addressing issues such as accurate registration and georeferencing of the scans and the need of a stable reference frame, TLS error modelling and reduction, point cloud processing techniques for deformation analysis, scanner calibration issues and assessing the potential of TLS in detecting sub-centimetre and millimetre deformations. However, several issues are still open to investigation as far as TLS is concerned in change detection and deformation monitoring studies such as rigorous and efficient workflow methodology of point cloud processing for change detection and deformation analysis, incorporation of measurement geometry in deformation measurements of high-rise structures, design of data acquisition and quality assessment for precise measurements and modelling the environmental effects on the performance of laser scanning. Even though some studies have attempted to address these issues, some gaps exist as information is still limited. Some methods reviewed in the case studies have been applied in landslide monitoring and they seem promising to be applied in engineering surveying to monitor structures. Hence the proposal of a three-stage process model for deformation analysis is presented. Furthermore, with technological advancements new TLS instruments with better accuracy are being developed necessitating more research for precise measurements in the monitoring of structures

    Experimental study of negative photoconductivity in n-PbTe(Ga) epitaxial films

    Full text link
    We report on low-temperature photoconductivity (PC) in n-PbTe(Ga) epitaxial films prepared by the hot-wall technique on -BaF_2 substrates. Variation of the substrate temperature allowed us to change the resistivity of the films from 10^8 down to 10_{-2} Ohm x cm at 4.2 K. The resistivity reduction is associated with a slight excess of Ga concentration, disturbing the Fermi level pinning within the energy gap of n-PbTe(Ga). PC has been measured under continuous and pulse illumination in the temperature range 4.2-300 K. For films of low resistivity, the photoresponse is composed of negative and positive parts. Recombination processes for both effects are characterized by nonexponential kinetics depending on the illumination pulse duration and intensity. Analysis of the PC transient proves that the negative photoconductivity cannot be explained in terms of nonequilibrium charge carriers spatial separation of due to band modulation. Experimental results are interpreted assuming the mixed valence of Ga in lead telluride and the formation of centers with a negative correlation energy. Specifics of the PC process is determined by the energy levels attributed to donor Ga III, acceptor Ga I, and neutral Ga II states with respect to the crystal surrounding. The energy level corresponding to the metastable state Ga II is supposed to occur above the conduction band bottom, providing fast recombination rates for the negative PC. The superposition of negative and positive PC is considered to be dependent on the ratio of the densities of states corresponding to the donor and acceptor impurity centers.Comment: 7 pages, 4 figure

    Introduction of Ophiobolus graminis into new polders and its decline

    Full text link
    corecore