654 research outputs found
Effects of creatine treatment on Jejunal phenotypes in a rat model of acidosis
We investigated the effects of creatine treatment on jejunal phenotypes in a rat model of oxidative stress induced by acidosis. In particular, the activities of some antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase), the level of lipid peroxidation, the expression of heat shock proteins (HSP70), and the expression of the major carriers of the cells (Na+/K+-ATPase, sodium-glucose Transporter 1\u2014SGLT1, and glucose transporter 2\u2014GLUT2) were measured under control and chronic acidosis conditions. Creatine did not affect the activity of antioxidant enzymes in either the control or acidosis groups, except for catalase, for which the activity was reduced in both conditions. Creatine did not change the lipid peroxidation level or HSP70 expression. Finally, creatine stimulated (Na+/K+)-ATPase expression under both control and chronic acidosis conditions. Chronic acidosis caused reductions in the expression levels of GLUT2 and SGLT1. GLUT2 reduction was abolished by creatine, while the presence of creatine did not induce any strengthening effect on the expression of SGLT1 in either the control or chronic acidosis groups. These results indicate that creatine has antioxidant properties that are realized through direct interaction of the molecule with reactive oxygen species. Moreover, the administration of creatine seems to determine a functional strengthening of the tissue, making it more resistant to acidosis
Recommended from our members
Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression.
Retinoblastoma is an aggressive childhood cancer of the developing retina that initiates by biallelic RB1 gene inactivation. Tumor progression in retinoblastoma is driven by epigenetics, as retinoblastoma genomes are stable, but the mechanism(s) that drive these epigenetic changes remain unknown. Lymphoid-specific helicase (HELLS) protein is an epigenetic modifier directly regulated by the RB/E2F pathway. In this study, we used novel genetically engineered mouse models to investigate the role of HELLS during retinal development and tumorigenesis. Our results indicate that Hells-null retinal progenitor cells divide, undergo cell-fate specification, and give rise to fully laminated retinae with minor bipolar cells defects, but normal retinal function. Despite the apparent nonessential role of HELLS in retinal development, failure to transcriptionally repress Hells during retinal terminal differentiation due to retinoblastoma (RB) family loss significantly contributes to retinal tumorigenesis. Loss of HELLS drastically reduced ectopic division of differentiating cells in Rb1/p107-null retinae, significantly decreased the incidence of retinoblastoma, delayed tumor progression, and increased overall survival. Despite its role in heterochromatin formation, we found no evidence that Hells loss directly affected chromatin accessibility in the retina but functioned as transcriptional co-activator of E2F3, decreasing expression of cell cycle genes. We propose that HELLS is a critical downstream mediator of E2F-dependent ectopic proliferation in RB-null retinae. Together with the nontoxic effect of HELLS loss in the developing retina, our results suggest that HELLS and its downstream pathways could serve as potential therapeutic targets for retinoblastoma
Spherical models of star clusters with potential escapers
An increasing number of observations of the outer regions of globular clusters (GCs) have shown a flattening of the velocity dispersion profile and an extended surface density profile. Formation scenarios of GCs can lead to different explanations of these peculiarities, therefore the dynamics of stars in the outskirts of GCs are an important tool in tracing back the evolutionary history and formation of star clusters. One possible explanation for these features is that GCs are embedded in dark matter haloes. Alternatively, these features are the result of a population of energetically unbound stars that can be spatially trapped within the cluster, known as potential escapers (PEs). We present a prescription for the contribution of these energetically unbound members to a family of self-consistent, distribution function-based models, which, for brevity, we call the Spherical Potential Escapers Stitched (SPES) models. We show that, when fitting to mock data of bound and unbound stars from an N-body model of a tidally limited star cluster, the SPES models correctly reproduce the density and velocity dispersion profiles up to the Jacobi radius, and they are able to recover the value of the Jacobi radius itself to within 20 per cent. We also provide a comparison to the number density and velocity dispersion profiles of the Galactic cluster 47 Tucanae. Such a case offers a proof of concept that an appropriate modelling of PEs is essential to accurately interpret current and forthcoming Gaia data in the outskirts of GCs, and, in turn, to formulate meaningful present-day constraints for GC formation scenarios in the early Universe
Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments
In many biochemical processes, proteins bound to DNA at distant sites are
brought into close proximity by loops in the underlying DNA. For example, the
function of some gene-regulatory proteins depends on such DNA looping
interactions. We present a new technique for characterizing the kinetics of
loop formation in vitro, as observed using the tethered particle method, and
apply it to experimental data on looping induced by lambda repressor. Our
method uses a modified (diffusive) hidden Markov analysis that directly
incorporates the Brownian motion of the observed tethered bead. We compare
looping lifetimes found with our method (which we find are consistent over a
range of sampling frequencies) to those obtained via the traditional
threshold-crossing analysis (which can vary depending on how the raw data are
filtered in the time domain). Our method does not involve any time filtering
and can detect sudden changes in looping behavior. For example, we show how our
method can identify transitions between long-lived, kinetically distinct states
that would otherwise be difficult to discern
Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions
Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed
- …