675 research outputs found

    Biases in the determination of dynamical parameters of star clusters: today and in the Gaia era

    Get PDF
    The structural and dynamical properties of star clusters are generally derived by means of the comparison between steady-state analytic models and the available observables. With the aim of studying the biases of this approach, we fitted different analytic models to simulated observations obtained from a suite of direct N-body simulations of star clusters in different stages of their evolution and under different levels of tidal stress to derive mass, mass function and degree of anisotropy. We find that masses can be under/over-estimated up to 50% depending on the degree of relaxation reached by the cluster, the available range of observed masses and distances of radial velocity measures from the cluster center and the strength of the tidal field. The mass function slope appears to be better constrainable and less sensitive to model inadequacies unless strongly dynamically evolved clusters and a non-optimal location of the measured luminosity function are considered. The degree and the characteristics of the anisotropy developed in the N-body simulations are not adequately reproduced by popular analytic models and can be detected only if accurate proper motions are available. We show how to reduce the uncertainties in the mass, mass-function and anisotropy estimation and provide predictions for the improvements expected when Gaia proper motions will be available in the near future.Comment: 14 pages, 8 figures, accepted for publication by MNRA

    Homogeneous photometry VII. Globular clusters in the Gaia era

    Get PDF
    We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48 Galactic globular clusters based on almost 90000 public and proprietary images. The photometry is calibrated with the latest transformations obtained in the framework of our secondary standard project, with typical internal and external uncertainties of order a few millimagnitudes. These data provide a bridge between existing small-area, high-precision HST photometry and all sky-catalogues from large surveys like Gaia, SDSS, or LSST. For many clusters, we present the first publicly available photometry in some of the five bands (typically U and R). We illustrate the scientific potential of the photometry with examples of surface density and brightness profiles and of colour-magnitude diagrams, with the following highlights: (i) we study the morphology of NGC 5904, finding a varying ellipticity and position angle as a function of radial distance; (ii) we show U-based colour-magnitude diagrams and demonstrate that no cluster in our sample is free from multiple stellar populations, with the possible exception of a few clusters with high and differential reddening or field contamination, for which more sophisticated investigations are required. This is true even for NGC 5694 and Terzan 8, that were previously considered as (mostly) single-population candidates.Comment: 24 pages, 12 figures, accepted for publication by MNRA

    Dependence of the diffraction angle on the surface microstructure of a steel sample

    Full text link

    Nucleosomes effectively shield DNA from radiation damage in living cells

    Get PDF
    Abstract Eukaryotic DNA is organized in nucleosomes, which package DNA and regulate its accessibility to transcription, replication, recombination and repair. Here, we show that in living cells nucleosomes protect DNA from high-energy radiation and reactive oxygen species. We combined sequence-based methods (ATAC-seq and BLISS) to determine the position of both nucleosomes and double strand breaks (DSBs) in the genome of nucleosome-rich malignant mesothelioma cells, and of the same cells partially depleted of nucleosomes. The results were replicated in the human MCF-7 breast carcinoma cell line. We found that, for each genomic sequence, the probability of DSB formation is directly proportional to the fraction of time it is nucleosome-free; DSBs accumulate distal from the nucleosome dyad axis. Nucleosome free regions and promoters of actively transcribed genes are more sensitive to DSB formation, and consequently to mutation. We argue that this may be true for a variety of chemical and physical DNA damaging agents

    Mass modelling globular clusters in the Gaia era: a method comparison using mock data from an N-body simulation of M 4

    Get PDF
    As we enter a golden age for studies of internal kinematics and dynamics of Galactic globular clusters (GCs), it is timely to assess the performance of modelling techniques in recovering the mass, mass profile, and other dynamical properties of GCs. Here, we compare different mass-modelling techniques (distribution function (DF)-based models, Jeans models, and a grid of N-body models) by applying them to mock observations from a star-by-star N-body simulation of the GC M 4 by Heggie. The mocks mimic existing and anticipated data for GCs: surface brightness or number density profiles, local stellar mass functions, line-of-sight velocities, and Hubble Space Telescope-and Gaia-like proper motions. We discuss the successes and limitations of the methods. We find that multimass DF-based models, Jeans, and N-body models provide more accurate mass profiles compared to single-mass DF-based models. We highlight complications in fitting the kinematics in the outskirts due to energetically unbound stars associated with the cluster ('potential escapers', captured neither by truncated DF models nor by N-body models of clusters in isolation), which can be avoided with DF-based models including potential escapers, or with Jeans models. We discuss ways to account for mass segregation. For example, three-component DF-based models with freedom in their mass function are a simple alternative to avoid the biases of single-mass models (which systematically underestimate the total mass, half-mass radius, and central density), while more realistic multimass DF-based models with freedom in the remnant content represent a promising avenue to infer the total mass and the mass function of remnants

    Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff

    Get PDF
    Recently it has been shown that when an equation that allows so-called pulled fronts in the mean-field limit is modelled with a stochastic model with a finite number NN of particles per correlation volume, the convergence to the speed vv^* for NN \to \infty is extremely slow -- going only as ln2N\ln^{-2}N. In this paper, we study the front propagation in a simple stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The lattice and finite particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the front, while the average front behind it ``crosses over'' to a uniformly translating solution. In this formulation, the effect of stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the advancement of the ``foremost bin''. We derive expressions of these probability distributions by matching the solution of the far tip with the uniformly translating solution behind. This matching includes various correlation effects in a mean-field type approximation. Our results for the probability distributions compare well to the results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of NN than it is required to have the ln2N\ln^{-2}N asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file
    corecore