125 research outputs found

    Major contribution of prokaryotes to carbon fluxes in the pelagic microbial food webs of the Mediterranean Sea

    Get PDF
    In this study, we carried out dilution experiments at the surface and in the mesopelagic and bathypelagic layers at 15 sites in the Mediterranean Sea that covered a wide range of trophic conditions. The main aim was to test the hypothesis that prokaryotes, and particularly heterotrophic prokaryotes, are pivotal in sustaining both nanoplankton and microzooplankton energy requirements at all of the considered trophic states. These data highlight that bacterivory is the major pathway of organic carbon transfer in the oligotrophic and meso-eutrophic environments. The microzooplankton mostly feed on prokaryotes, directly or indirectly (through nanoplankton exploitation), rather than on microalgae. Under eutrophic conditions, herbivory is the main trophic pathway; however, the heterotrophic prokaryotes always represent an important source of carbon. The lowest food-web efficiency (i.e., ratio between productivity of the highest trophic level and productivity of the lower trophic levels) was determined for the eutrophic status due to possible grazer satiation, which translates into an excess of autotrophic biomass available for export or transfer to higher trophic levels. The food-web efficiency is higher under mesoeutrophic and oligotrophic conditions, where the main pathway is bacterivory. In the mesopelagic and bathypelagic layers, only nanoplankton predation on heterotrophic prokaryotes was investigated. The food-web efficiency in these layers was relatively high and nanoplankton appear to efficiently exploit the available biomass of heterotrophic prokaryote

    The regulation of cardiac intermediary metabolism by NADPH oxidases

    Get PDF
    NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart’s physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart’s response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease

    A novel methodological approach for land subsidence prediction through data assimilation techniques

    Get PDF
    AbstractAnthropogenic land subsidence can be evaluated and predicted by numerical models, which are often built over deterministic analyses. However, uncertainties and approximations are present, as in any other modeling activity of real-world phenomena. This study aims at combining data assimilation techniques with a physically-based numerical model of anthropogenic land subsidence in a novel and comprehensive workflow, to overcome the main limitations concerning the way traditional deterministic analyses use the available measurements. The proposed methodology allows to reduce uncertainties affecting the model, identify the most appropriate rock constitutive behavior and characterize the most significant governing geomechanical parameters. The proposed methodological approach has been applied in a synthetic test case representative of the Upper Adriatic basin, Italy. The integration of data assimilation techniques into geomechanical modeling appears to be a useful and effective tool for a more reliable study of anthropogenic land subsidence

    Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2

    Get PDF
    Rationale: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodelling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A (PKA) signalling appears to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signalling microdomains. Objective: How individual cAMP microdomains impact on cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Methods and Results: Using pharmacological and genetic manipulation of PDE activity we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy whereas increasing cAMP levels via PDE2 inhibition is anti-hypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of PKA isoforms we demonstrate that the anti-hypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a PKA type II subset leading to phosphorylation of the nuclear factor of activated T cells (NFAT). Conclusions: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo and its inhibition may have therapeutic applications

    PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Get PDF
    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals

    Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload

    Get PDF
    Background The mitochondrial unfolded protein response (UPRmt) is activated when misfolded proteins accumulate within mitochondria and leads to increased expression of mitochondrial chaperones and proteases to maintain protein quality and mitochondrial function. Cardiac mitochondria are essential for contractile function and regulation of cell viability, while mitochondrial dysfunction characterizes heart failure. The role of the UPRmt in the heart is unclear. Objectives The purpose of this study was to: 1) identify conditions that activate the UPRmt in the heart; and 2) study the relationship among the UPRmt, mitochondrial function, and cardiac contractile function. Methods Cultured cardiac myocytes were subjected to different stresses in vitro. Mice were subjected to chronic pressure overload. Tissues and blood biomarkers were studied in patients with aortic stenosis. Results Diverse neurohumoral or mitochondrial stresses transiently induced the UPRmt in cultured cardiomyocytes. The UPRmt was also induced in the hearts of mice subjected to chronic hemodynamic overload. Boosting the UPRmt with nicotinamide riboside (which augments NAD+ pools) in cardiomyocytes in vitro or hearts in vivo significantly mitigated the reductions in mitochondrial oxygen consumption induced by these stresses. In mice subjected to pressure overload, nicotinamide riboside reduced cardiomyocyte death and contractile dysfunction. Myocardial tissue from patients with aortic stenosis also showed evidence of UPRmt activation, which correlated with reduced tissue cardiomyocyte death and fibrosis and lower plasma levels of biomarkers of cardiac damage (high-sensitivity troponin T) and dysfunction (N-terminal pro–B-type natriuretic peptide). Conclusions These results identify the induction of the UPRmt in the mammalian (including human) heart exposed to pathological stresses. Enhancement of the UPRmt ameliorates mitochondrial and contractile dysfunction, suggesting that it may serve an important protective role in the stressed heart

    Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation.

    Get PDF
    Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4-dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial
    • …
    corecore