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Abstract
Anthropogenic land subsidence can be evaluated and predicted by numerical models, which are often built over deterministic
analyses. However, uncertainties and approximations are present, as in any other modeling activity of real-world phenomena.
This study aims at combining data assimilation techniques with a physically-based numerical model of anthropogenic
land subsidence in a novel and comprehensive workflow, to overcome the main limitations concerning the way traditional
deterministic analyses use the available measurements. The proposed methodology allows to reduce uncertainties affecting
the model, identify the most appropriate rock constitutive behavior and characterize the most significant governing
geomechanical parameters. The proposed methodological approach has been applied in a synthetic test case representative
of the Upper Adriatic basin, Italy. The integration of data assimilation techniques into geomechanical modeling appears to
be a useful and effective tool for a more reliable study of anthropogenic land subsidence.
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1 Introduction

It is well known that fluid withdrawal from the subsurface
involves the compaction of the reservoir rock and the con-
sequent propagation of the deformation from underground
up to the land surface. The corresponding loss of land eleva-
tion, i.e., land subsidence, may cause severe environmental
problems, especially in coastland and low-land areas, such
as the increase of the risk of flooding and the salinization of
fresh shallow groundwater, and generally affect several vul-
nerable human activities from both a social and economical
viewpoint, e.g., [22, 48, 49]. For this reason, a reliable pre-
diction of land motion is of considerable importance, and
numerical models can play a key role to estimate the amount
of land subsidence caused by human activities and simulate
the possible related consequences.
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As a matter of fact, uncertainties and approximations
are implicit in any mathematical and numerical modeling
activity of real-world processes, and this can cause lack of
solution quality and reliability. In land subsidence simula-
tion due to underground fluid withdrawal, such uncertainties
can be related to a lot of different issues, such as the geom-
etry and the lithology of the porous medium, the actual
pore pressure variation and distribution in space and time,
the mechanical behaviour of the deforming rock, the rep-
resentativeness of the governing physical processes by the
selected mathematical model, and so on. Traditionally, in
practical numerical computations these uncertainties are
accounted for by defining a number of different scenar-
ios, with the resulting deterministic modeling outcomes
combined to define confidence intervals. In recent years,
however, there is an increasing availability of monitoring
data, such as satellite data on the surface motion with the
aid of GPS and InSAR technology [8, 12, 42, 46], or in-situ
measurements of the formation compaction, e.g., by deep
extensometers or the radioactive marker technique [21, 26,
32]. This has significantly enlarged the amount of avail-
able pieces of information, which can be used to monitor the
subsidence occurrence in both space and time. Including all
the available information in the simulation process in order
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to improve the prediction reliability represents a natural
evolution of the land subsidence modeling activity. In this
context, the use of data assimilation (DA) techniques can
be a robust strategy to quantify and reduce the uncertainties
in the subsidence prediction by incorporating measurements
and model outcomes in a proper assimilation scheme.

Originally developed especially for atmospheric and
oceanographic simulations, DA strategies have been recently
used also in underground applications, such as hydrol-
ogy, geomechanics and petroleum engineering [4, 7, 16,
24, 29, 43, 54, 56]. Among the most popular DA tech-
niques used in geomechanical applications, here wemention
three approaches that have proved to be particularly suit-
able for land subsidence analyses. The focus is specifically
on Red Flag (RF), Ensemble Smoother (ES), and its varia-
tion in form of the Multiple Data Assimilation (MDA-ES).
However, for a detailed review of DA techniques in geo-
sciences the reader can for instance refer to [1, 9, 44],
just to cite a few recent relevant works. The RF technique
inexpensively provides the probability of an event follow-
ing a purely Bayesian approach, with no update of the prior
model [34]. This is a fast method for a preliminary analy-
sis of an ensemble of model realizations, which can provide
the most probable scenario given a number of uncertain
parameters. The ES can be used to update both state vari-
ables and model parameters in a 4-D acquisition (space
and time), and evaluate the related uncertainties. The ES
is an ensemble-based approach that uses an approximate
sampling of the posterior distribution by a finite ensemble
of Monte Carlo realizations [19, 51]. For the straightfor-
ward implementation and adaptability to different fields of
application, this ensemble-based technique and its recent
variations are increasingly employed. The ES has been ini-
tially used in petroleum engineering, especially for history
matching purposes [10, 11, 39], with recent applications
also for subsidence predictions [4, 24, 56]. In [23] and [56],
the ES technique has been used to calibrate the geome-
chanical parameters in a one-way coupled model. In [2]
and [4] the efficiency of ES has been demonstrated for
the calibration of geomechanical parameters such as Pois-
son coefficient, ratio between horizontal and vertical elas-
tic modulus, ratio between horizontal and vertical shear
modulus and ratio between I and II cycle compressibility.
In [55, 56] and [58] ES has been used in real-world applica-
tions to constrain a geomechanical model through land sur-
face and/or compaction measurements. Finally, the MDA-
ES algorithm should help improve the ES outcome, espe-
cially when the relation between model solution and param-
eters is non-linear. In [16] the available observations have
been assimilated multiple times with an inflated measure-
ment covariance matrix. This technique has been combined

with ES approach (MDA-ES) in [17] and used in three
synthetic history matching problems. A MDA-ES algo-
rithm was also applied by [24] to estimate the reservoir
compaction coefficient and the subsurface basement elastic
modulus, thus improving the ES effectiveness in non-linear
problems.

The objective of this paper is to develop a robust step-by-
step workflow for the prediction of land subsidence above
producing hydrocarbon fields, integrating well-established
DA techniques with an appropriate uncertainty evalua-
tion. In order to overcome the main limitations of tradi-
tional deterministic approaches, we aim at looking at the
geomechanical modelling of land subsidence from a more
comprehensive perspective. To this purpose, the proposed
methodological approach automatically combines the avail-
able measurements with the mathematical and numerical
description of the main undergoing processes. The work-
flow is based on successive steps of DA application, such
as RF, ES and MDA-ES, requiring an increasing level of
complexity and computational effort, but providing more
detailed and refined outcomes. Prediction uncertainties are
progressively reduced as new measurements become avail-
able, with the model gradually trained and updated as the
knowledge of the actual phenomenon improves. The final
result is a substantial increase of the prediction reliability.

In order to investigate the capabilities and possible draw-
backs of the proposed approach, an extensive numerical
experimentation has been carried out by considering a syn-
thetic test case, which is, however, representative of an off-
shore real-world hydrocarbon reservoir. The effectiveness
of the selected DA techniques has been tested in different
possible scenarios of subsidence modelling, both changing
the combinations of uncertain geomechanical parameters
and constraining the model outcomes with a different num-
ber and type of synthetic measurements. The numerical
results allow to characterize each step of the workflow
and demonstrate that the integration of DA approaches in
subsidence problems can be effective to both avoid an over-
confidence in deterministic model applications and reduce
the prediction uncertainties. In addition, they can suggest
the possibility of easily extending and generalizing the
application of the proposed methodology to other settings
and modelling targets.

The paper is organized as follows. First, the forward numer-
ical model used to analyse land subsidence due to a com-
pacting reservoir is briefly described, and the investigated
DA methods are introduced. Then, numerical results for
a synthetic test case with two different constitutive laws
are presented and discussed. On the basis of the numeri-
cal results, a tentative novel workflow for land subsidence
modelling is introduced, thus closing the paper.
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2Methodological approach

The methodological approach is based on the idea of
building a model for land subsidence management that: (i)
is progressively trained by the assimilation of new data,
(ii) reduces the prediction uncertainty as the production
program proceeds, and (iii) is able to react almost in real-
time to modifications in the reservoir development.

The candidate DA approaches require the generation
through the forward model of an ensemble of realizations
allowing to propagate the uncertainties from the input
parameters to the problem state variables, e.g., land surface
vertical displacements. The augmented ensemble, including
both state variables and input parameters, is used with the
DA techniques, in order to reduce the uncertainties and
make the model results more reliable.

In the next sections, the geomechanical model is first
introduced in general, and then each DA technique included
in the workflow is described. The model presented herein
represents a consistent option to investigate the efficiency
and feasibility of the workflow for land subsidence analysis,
but neither the only, nor necessarily the best, choice
among the possible alternatives. The proposed approach can
be generalized to other contexts as well, using different
models, sources of uncertainties and types of available
measurements.

2.1 Numerical forwardmodel

Land subsidence due to fluid withdrawal is classically mod-
eled by means of Biot’s theory of consolidation [5], where
variations of source of strength reflect on the pore fluid
movement and consequently on stress and displacement
field of solid skeleton. To study the anthropogenic land sub-
sidence due to compaction of a deep hydrocarbon reservoir,
a flow and a geomechanical model are necessary.

The flow model controls the dynamics of the hydrocar-
bon reservoir and the connected aquifer system. It is based
on Darcy’s law coupled with the continuity equation. The
generalized multiphase flow model is:

∇ ·
[
κρα

μα

∇pα (x, t)
]

= ∂

∂t
(φSαρα) (1)

where ∇· and ∇ are the divergence and gradient operator,
respectively, κ is the permeability of the porous medium, ρα

the density of the fluid phase α andμα its viscosity, pα is the
fluid pore pressure that is a function of the position vector x
and the time t , φ is the porosity and Sα the saturation index
for the fluid phase α.

Land settlements are computed by a geomechanical model
that is based on the solution of the equilibrium equation of a

3D porous volume with Terzaghi’s effective stress principle
[6, 50]:

∇ ·
(
σ (x, t) − bp̃ (x, t) 1

)
= 0 (2)

where σ (x, t) and 1 are the effective stress and the identity
tensor, respectively, b is the Biot coefficient and p̃ (x, t) is
the equivalent pore pressure:

p̃ =
∑
α

Sαpα (3)

The system of Eq. 2, supplemented with appropriate
boundary conditions, is numerically solved by means of
a finite element formulation. The effective stress tensor
σ (x, t) is generally linked to the displacement field by an
appropriate constitutive relationship:

σ (x, t) = D̂
[
ε (x, t)

]
: ε (x, t) (4)

where D̂ is the rank-four constitutive tensor, ε (x, t) is the
strain tensor and ‘:’ indicates the inner product. The strain
tensor depends on the displacement field u(x, t) according
to the small strain hypothesis:

ε (x, t) = ∇su (x, t) (5)

where ∇s is the symmetric gradient operator. Introducing
Eq. 3 to Eq. 5 into Eq. 2 and prescribing the appropriate
boundary conditions leads to the definition of the geome-
chanical model in the main unknown u(x, t). The selection
of the generally non-linear operator D̂ is the key for the
model outcome. In this application, we will consider two
different non-linear constitutive models, which can allow
for a reliable description of the mechanical behavior of geo-
logical formations: (i) the elasto-plastic modified Cam-Clay
(MCC) and (ii) the visco-elasto-plastic (VEP) Vermeer-
Neher law. For a thorough discussion on these constitutive
models, the reader is referred to the relevant literature,
e.g. [13, 52]. The governing material parameters that appear
in the definition of D̂ for each law will be introduced in
Section 3.1.

A one-way coupled approach is considered in our simu-
lations, as is fully warranted by the time and space scale of
interest. In particular, such an approach is usually employed
in the context of real-world oil and gas reservoir engineer-
ing applications, where the mechanics-to-flow coupling is
usually weak, e.g. [28, 37, 53]. As a consequence, the dis-
tribution of the pore pressure variation in the reservoir and
the connected aquifer is firstly predicted by the flow model
(1) and then the results are introduced in the geomechani-
cal model. In this work, an in-house developed code is used.
Details on the numerical formulation and implementation
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are given in [27, 31, 41]. This code has been widely vali-
dated and used in several real-world applications, e.g., [22,
31, 46, 47, 55].

2.2 Data assimilation techniques

While the outcome of numerical models is obtained in a
deterministic way, every computational tool describing real-
world phenomena is based on a number of assumptions
and approximations. Integration of DA techniques allows to
consider and reduce the uncertainties implicitly introduced
into numerical models constraining them with a set of
measurements of the simulated process. In this work, we
focus on the geomechanical model and assume the pore
pressure p̃ (x, t) to be known as the result of a history-
matching process. Though the pressure field has its own
uncertainty, in-situ well measurements coupled with the
history-matching process typically reduce the size of the
confidence interval, such that we can consider p̃ as a
deterministic value with respect to other uncertain parame-
ters.

DA techniques are included into the structural model
to account for and reduce uncertainties related both to
the definition of the rock constitutive laws and the
geomechanical parameters. After a preliminary analysis of
the ensemble, denoted as model diagnostic, three main
approaches are investigated and combined: RF, ES and
MDA-ES. Each method is briefly reviewed in the next
paragraphs focusing on the problem that follows. Generally,
the vector of the true state variables in both space and time
ψt ∈ R

nψ can be defined as a function of the vector of
the true model parameters θt ∈ R

nθ through the forward
operator G:

ψt = G
(
θt

)
with nψ and nθ the number of states and parameters,
respectively. Focusing on the land subsidence problem,
the operator G is the geomechanical simulator that relates
the true state variables, such as land settlements, to the
true model parameters, for example the geomechanical
parameters that control the rock behavior. The vector ψt

is related to the vector of noisy empirical measurements
d ∈ R

nd , with nd the number of measurements, through the
generally non-linear relationship:

d = dt + εd = H
[
ψt

] + εd (6)

where H is the measurement operator mapping from ψt to
the true observable vector dt ∈ R

nd and εd ∼ N (0,Cd)

∈ R
nd is the measurement error, with Cd ∈ R

nd×nd the
covariance matrix of measurement error. The matrix Cd

depends on the kind and accuracy of the available measure-
ments.

The vector of the model state ψ ∈ R
nψ is related to ψt

by the relation:

ψ = ψt + εψ (7)

where εψ ∼ N
(
0,Cψ

) ∈ R
nψ is the unknown error in the

model states with Cψ ∈ R
nψ×nψ the covariance matrix of

the model state.
In the following, ϕ ∈ R

nϕ×nmc denotes the matrix of
augmented ensemble of states ψ ∈ R

nψ and parameters
θ ∈ R

nθ and Cf ∈ R
nϕ×nϕ the related covariance matrix,

with nϕ the sum of nψ and nθ , and nmc the size of the
Monte Carlo ensemble. The superscripts prior and update
designate the forecast and update ensembles, respectively.

2.2.1 Model diagnostic

A model diagnostic procedure can be initially carried out
to validate the ensemble of model realizations with respect
to the synthetic measurements. The main objectives of the
validation are to verify if the assumptions are violated, if the
uncertainties are underestimated and if too much confidence
is given to the ‘a priori’ model [45]. A way to validate the
forecast ensemble is the χ2-test, as proposed in [24]. This
approach is based on the mismatch between model results
and observations, that is [36]:

J (θ) = 1

2

(
θ − θprior

)T

Cθ
−1

(
θ − θprior

)

+1

2
(ψ (θ) − d)T Cd

−1 (ψ (θ) − d) (8)

For linear problems, the minimum of J (θ) allows for
a χ2 distribution with degrees of freedom equal to the
number of measurements nd [45]. Consequently, it is well
recognized that an ensemble ensures better results in DA
applications when

χ2 = J (θ)

nd

� 1 (9)

This could be used as a general guideline to define a
range for the acceptable size of J (θ) in non-linear inverse
problems [11]. Generally, the data mismatch part of the
cost function in Eq. 8 dominates the magnitude of the total
function J (θ), so the first contribution of Eq. 8 can be
neglected [11].

2.2.2 Red Flag

RF, as introduced in [34], is a statistical technique that
computes the probability of an event by combining prior
information with the likelihood of the measurements. In this
work, RF approach is used as a preliminary method to define
the probability of every Monte Carlo realization in the
prior ensemble. This allows to evaluate ‘a priori’ the model
uncertainties without solving the inverse problem, thus
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providing a first estimate of the combination of parameters
which is most likely to occur. The Bayesian probability
P

(
ψk|d

)
of a particular realization k of the ensemble is:

P
(
ψk|d

) = P
(
ψk

)
P

(
d|ψk

)
∑nmc

j=1 P
(
ψj

)
P

(
d|ψj

) (10)

where P
(
ψk

)
is the prior probability of the realization,

P
(
d|ψk

)
is the associated likelihood of the measurements,

and the denominator is a normalizing factor [34]. To define
the likelihood, the measurements must be compared with
the model outcome calculated at each time and space
location for the realization k. Considering a Gaussian
distribution for the likelihood and introducing a cost
function Ik , the likelihood reads [34]:

P
(
d|ψk

) = e(−Ik) (11)

Ik = 1

2
qT Cd

−1q (12)

where q is the vector of the differences between measure-
ments and model results in both space and time.

2.2.3 Ensemble smoother

ES is a non-sequential DA algorithm originally proposed
by [51]. It is a variance-minimizing estimator that combines
prior information, measurements, and the solution of the
forward model to update model states and parameters. With
ES, the solution of the inverse problem can be written in a
matrix form as:

ϕupdate = ϕprior + K
(
D − H

[
ϕprior

])
(13)

where D ∈ R
nd×nmc is the matrix of measurements and

K ∈ R
nϕ×nd the Kalman gain, calculated as:

K = (H [Cf])
T

(
H

[
(H [Cf])

T
]

+ Cd

)−1
(14)

With a slight notation abuse, here H denotes the same
mapping operator from model to the observational space as
defined in Eq. 6, but extended to the vector of state variables
augmented by the parameters.

The analyses that follow are carried out with the ES
implementation according to the approach introduced in
[18]. Results are optimal when the probability distribution
of uncertain parameters is Gaussian [51]. The quality of
the outcome of the ES application can be evaluated by
comparing the prior and update ensemble through two
performance indices, the average absolute error (AE) and
the average ensemble spread (AES) [29]:

AE = 1

nmcnd

nmc∑
k=1

nd∑
i=1

|ϕi,k − ϕtrue
i | (15)

AES = 1

nmcnψ

nmc∑
k=1

nψ∑
i=1

|ϕi,k − ϕmean
i | (16)

where ϕi,k is either the prior or the posterior value of the
k-th realization for the i-th observation or state, ϕtrue

i is
the true reference value and ϕmean

i is the ensemble mean.
These metrics were already used in other works as well,
e.g., [56, 59]. The AE index is a measure of the algorithm
capability to approach the truth, as it compares the model
outcome with the true reference value. This index can be
computed only in a synthetic case where the true reference
is known. The AES index accounts for the deviation of the
model results from the ensemble mean. Hence, it provides
an indication of the spread of the distribution, i.e., it is a
measure of the confidence in the predicted value. Generally,
results of the assimilation are satisfactory when AE and
AES of the update ensemble decrease with respect to the
corresponding indices of the forecast ensemble. For this
reason, the relative variation J of these indices from forecast
to update is also computed:

J = ζprior − ζ update

ζ prior
(17)

where ζ is either the AE or AES index.

2.2.4 Multiple data assimilation

MDA technique was originally introduced by [16] to improve
the results of history-matching problems and was later com-
bined with ES approach [17]. Basically, in MDA-ES the
ES analysis is repeated for a definite number of ‘iterations’
to improve the results of a single assimilation. The covari-
ance matrix of the measurement error Cd is multiplied by
an inflation coefficient αk ≥ 1 for every ‘iteration’ k to
avoid an over-confidence in the available measurements.
The choice of αk is such that:
∑

k

1

αk

= 1 (18)

This condition makes MDA-ES equivalent to ES for
Gaussian-linear problems [15]. The selection of αk is still a
matter of debate, with several different proposals currently
advanced by some researches, e.g. [14, 38].

3 Test case analyses and results

In this section, the test case is introduced and numerical
results are presented. Analyses are performed on a synthetic
test case, which is, however, based on the structural and
mechanical properties representative of an off-shore real-
world hydrocarbon reservoir buried in a sedimentary basin,
such as the Northern Adriatic, Italy. Among the several
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different uncertainties possibly affecting a land subsidence
model, we focus on those associated to the constitutive
behavior and the governing deep rock mechanical param-
eters, which most affect the expected ground motion. We
consider feasible ranges for each uncertain parameter based
on the physical experimental evidence and compute ensem-
bles taken from the parameter distributions for two different
constitutive laws. Then, such uncertainties are propagated
on the state variables of the problem through the forward
geomechanical model. The augmented ensemble, including
both state variables and model parameters, is used with the
DA techniques. To constrain the model, we use two different
types of observations: (i) surface vertical displacements, and
(ii) deep compaction measurements at the reservoir depth. In
particular, we suppose the former to be recorded by a GPS
station, while the latter derive from the radioactive marker
technique.

First, geometry and properties of the synthetic model are
described, with the outcome obtained for the combination
of parameters we assume as the ‘true’ configuration. Then,
an extensive numerical experimentation is carried out and
discussed.

3.1 Synthetic test case

We consider a synthetic test case representative of an off-
shore hydrocarbon reservoir buried in a sedimentary basin.
To make the model configuration as much realistic as
possible, geometry and properties typical of the Northern
Adriatic basin, Italy, have been used. Two different possible
constitutive laws, namely a MCC model [13] and a VEP
model based on Vermeer-Neher theory [52], are associated
to the reservoir and the hydraulically connected aquifer.
The first constitutive law describes an elasto-plastic rate-
independent model, the latter is rate-dependent and accounts
for viscous effects. These two models are both non-linear
and representative of the possible behavior of a deep
porous volume subject to pressure variations [30, 41].
Since the behavior of underburden and overburden does
not significantly affect surface movements [22, 46], for the
sake of simplicity, they are characterized by a simple and
deterministic linear elastic constitutive law.

The model domain covers an area of 50 km by 50 km and
extends down to about 5 km depth (Fig. 1). The reservoir is
located in a central position at a depth interval between 1038
m and 1075 m. The domain is discretized into a 3D finite
element mesh, which consists of 71,734 nodes and 410,030
tetrahedrons. A part of the mesh showing the aquifer and
reservoir is presented in Fig. 1a. We assume a homogeneous
Poisson coefficient equal to 0.30 everywhere and a unitary
Biot coefficient. The vertical compressibility cm is assumed
to follow the hysteretic law vs the effective vertical stress

σz developed by [3, 20] for the Northern Adriatic basin,
Italy:

c
Icycle
m = 1.0044 · 10−2 · σ−1.1347

z (19)

c
IIcycle
m = 2.9087 · 10−4 · σ−0.4315

z (20)

where cm and σz are in [MPa−1] and [MPa], respectively.
Homogeneous null boundary conditions are prescribed for
displacements, on the lateral and bottom boundaries, and for
stress, on the top surface.

The pore pressure variation due to hydrocarbon extrac-
tion is applied in the reservoir and aquifer. The pressure
history shown in Fig. 2 is prescribed on reservoir elements
to simulate a possible program of hydrocarbon production.
In order to take into consideration a scenario as realistic
and general as possible, we simulate two production phases
(the first three years and from year 5 to year 7) divided
by a temporary stop of the extraction. At the end of the
production program, a natural pressure recovery is sup-
posed. The pressure variation propagates from the reservoir
to the hydraulically connected aquifer and is considered
deterministic, as discussed above.

Since we consider a synthetic case, we run the forward
model with a set of parameter values, that are considered
as the ‘true’ configuration, to define hypothetical measure-
ments. In order to simulate real recordings and avoid a
trivial application, the outcome of the geomechanical model
at the ‘measurement’ location is properly perturbed to get
the assimilation data, that are for example the dots in
Fig. 3. Characteristic size and correlations of the synthetic
measurement error will be clarified in Section 3.1.1.

The material parameters required by both the MCC
and VEP constitutive laws are the modified compression
index λ∗ and the modified swelling index k∗, while the
modified creep index μ∗ and the geotechnical initial
overconsolidation ratio R are needed only by the VEP
model. Specifically, their physical meaning is as follows:

– λ∗ is the slope of the normal consolidation profile in
the plot of volumetric strain vs axial stress in natural
logarithmic scale, i.e. it is a parameter that mainly
controls the rock behavior in I-cycle conditions;

– k∗ is the slope of the unloading profile in the same plot
as λ∗, thus it mainly impacts on II-cycle conditions;

– μ∗ represents the slope of the volumetric strain profile
vs time in natural logarithmic scale, so its value is a
measure of the delay between the pressure variation and
the related reservoir and land deformation;

– R is the ratio pc,r,0/pc,0, where pc,r,0 is a function
of the maximum volumetric stress ever experienced
by the material before loading and pc,0 depends on
the volumetric stress state at initial conditions. The
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Fig. 1 Views of the discretized domain with the distinction of different layers: 3D view of the partial mesh of the aquifer and reservoir where axis
Z is scaled by a factor 30 (a) and vertical section A-A’ with coordinates Z multiplied by a factor 10 (b)

parameter R is required to describe implicitly the yield
surface evolution in the VEP model.

All material parameters listed above are dimensionless. For
more details on the model properties and implementations,
see [30, 35, 41].

3.1.1 The parameter space

The ‘true’ configuration is selected as follows:

λ∗ = 0.004992

k∗ = 0.000700

μ∗ = 0.00015

R = 1.50

Figure 3 shows the vertical displacements in time for the
‘true’ configuration, where the maximum vertical motion is
recorded. As it can be easily seen, the difference between
the MCC and VEP behavior is not only related to the
displacement values, but also to their evolution in time. The
VEP model is typically characterized by a delay between
the variations of fluid production rates and the resulting land

Fig. 2 Prescribed pore pressure
variation in time, p̃ (x, t), on
reservoir elements (a) and its
propagation [MPa] from
reservoir to the hydraulically
connected aquifer after three (b),
five (c), seven (d) and ten (e)
years
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Fig. 3 Maximum vertical displacements in time resulting from the
geomechanical model run with the ‘true’ parameter configuration.
Squares and circles are an example of such outcomes perturbed to get
the synthetic measurements, respectively for the MCC and the VEP
constitutive law

settlement [30], which is not accounted for with a traditional
MCC approach. These displacements, that are the result
of the geomechanical model, have been perturbed with an
error ε ∼ N (0;Cd) to get the synthetic measurements
assimilated in the procedure. A detailed description of the
construction of Cd is presented in the lines that follow.

To take into consideration the uncertainties that affect the
geomechanical model, we define a variability range for the
parameters above. Uncertainty on the first two parameters
is related to the confidence interval of cm in Eqs. 19 and 20,
as described in [3], while the ranges of μ∗ and R are
chosen according to typical values reported in the literature
[30, 52]. Thus, the following statistical distributions of the
parameters are used in our tests:

ln(λ∗) ∼ N (−4.9363; 0.33295)
ln(k∗) ∼ N (−6.7271; 0.50975)
μ∗ ∼ U(0.0001; 0.0002)
R ∼ U(1.4; 1.8)
i.e., λ∗ and k∗ are Gaussian parameters in a log-scale,
while μ∗ and R have a uniform distribution. We assume the
parameters to be constant over the portion of the domain
where a pressure variation takes place. The reason for this
assumption is twofold: (i) the variability in space of the
geomechanical parameters is usually much lower than that
of the hydraulic parameters. In particular, in sedimentary
basins such a variability is expected to take place more along
the vertical direction than in a horizontal plain. However,
in this application the reservoir and aquifer thickness is
relatively small to present a significant geomechanical
heterogeneity in λ∗, k∗ and μ∗. Nonetheless, we recall
that the uniaxial compressibility cm is not constant and is
varying with depth as a function of the vertical effective

stress σz; (ii) the available measurements over off-shore
reservoirs usually reduce to displacement time series over
a small (1 or 2) number of points, and this is not sufficient
to effectively characterize the spatial heterogeneity of the
uncertain parameters [58].

We suppose that a single GPS station located at the
reservoir center collects measurements of the vertical
displacement in time, while compaction measurements at
the reservoir depth are recorded by radioactive markers.
We assimilate displacement measurements every three
months and compaction measurements every three years.
The covariance matrix of measurement error Cd has to
be defined. Uncertainties related to observations can be
computed as the sum of a measurement and an idealisation
noise, according to [33]. The first component depends
on the accuracy of the tool used for the measurements
and the representativeness of the mathematical model for
reproducing the observations, and affects only the diagonal
entries of Cd. The idealisation noise affects both the
diagonal and the extra-diagonal entries according to the
spatial and temporal correlation among measurements. In
subsidence modeling, any deformation caused by sources
other than the deep compacting layers should be considered
as noise. Therefore, all signal components in geodetic
observations that are not related to the signal of interest are
treated as a noise and included in the idealisation part ofCd.
Following the fractional Brownian motion approach [33],
the idealisation noise terms are computed as:

(Cd)ii = ς2t
p
i (21a)

(Cd)ij = 1

2
ς2

(
t
p
i + t

p
j − |ti − tj |p

)
(21b)

where ti is the time of the measurement i, ς the standard
deviation and p the Hurst index. In real-world studies,
parameters ς and p derive from specific studies on the
measurement quality. Here, for the vertical displacements
recorded by the GPS station, they have been computed
through a fitting process of the variogram of the model
outcome run with the ‘true’ parameters (Fig. 3), as described
in [33]. For the selected constitutive laws, such parameters
read:

pMCC = 1.672

ς2
MCC = 1.112 · 10−3 m2/yrp

pV EP = 1.895

ς2
V EP = 4.158 · 10−4 m2/yrp

The measurement noise is defined from a normal
distribution with zero mean and standard deviation equal to
1.5 mm [33]. On the contrary, compaction measurements
are considered uncorrelated. To defineCd, the measurement
noise is computed from a normal distribution with zero
mean and standard deviation equal to 1.0 cm.
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To analyze the role of each parameter, we first investigate
the potential of the proposed DA techniques to reduce
the uncertainty on each single parameter distribution
individually, then we consider some of their combinations.
Table 1 lists all the analyzed configurations. A total number
of 12 sets is considered, 3 referring to MCC constitutive law
and 9 to VEP behavior.

3.2 Model diagnostic

The ensemble of model realizations is initially validated
with respect to the synthetic measurements with the model
diagnostic procedure. Here, the model state ψ of Eq. 8
includes the synthetic displacement measurements resulting
from the geomechanical model at the GPS location. The
magnitude of J (θ) is calculated for every realization
of the displacement ensemble. Each ensemble includes
50 realizations created running the forward model with
the probability distributions for the uncertain parameters
described in paragraph Section 3.1. Then an average value
of χ2 for the entire ensemble is defined. The resulting values
are shown in Table 1.

The χ2-test provides only a qualitative analysis of the
ensemble and it is not possible to identify a clear trend.
Most of the values are close to one. Despite of this, when
the number of uncertain parameters grows, the χ2 value is
higher, as in set # 3 for the MCC constitutive law and in the
last five sets of Table 1 for the VEP behavior. Higher values
of χ2 denote a probable increasing difficulty in constraining
the model with DA techniques. Vice versa, if χ2 is smaller
than one, the variance associated to the ensemble is lower
than the variance associated to the measurements, meaning
that DA techniques cannot provide improvements in the
update of the ensemble and is therefore likely that DA
processes are ineffective.

Table 1 Analyzed configuration sets with their associated uncertain
parameters and constitutive law, and χ2 values

Set Parameters Law χ2

1 λ∗ MCC 1.22

2 k∗ MCC 0.95

3 λ∗ k∗ MCC 1.32

4 λ∗ VEP 1.47

5 k∗ VEP 1.41

6 μ∗ VEP 0.93

7 R VEP 1.03

8 λ∗ k∗ VEP 4.35

9 λ∗ R VEP 1.91

10 λ∗ k∗ μ∗ VEP 1.85

11 λ∗ k∗ R VEP 1.79

12 λ∗ k∗ μ∗ R VEP 1.65

Generally, the constitutive law that describes the behavior
of the porous medium is ‘a priori’ unknown. However, a
guess could be obtained from available information, e.g.,
laboratory tests, in-situ measurements or data provided by
other reservoirs in the same basin. The χ2-test can be
also used as a preliminary tool to select the most appropriate
constitutive law for the geomechanical model, that is
the law which appears to be more representative from
the available measurements. As an example, we consider
cases with the uncertain modified compression index λ∗
and modified swelling index k∗, with the related forecast
ensembles. Results are shown in Table 2. We compute
the χ2 value when the observations are obtained with the
same constitutive law of the ensemble and when they are
computed with a constitutive law different from the one
used to generate the ensemble. The latter test allows to
mimic the case where the choice of the constitutive law
in the modeling workflow is not consistent with the actual
physical governing process.

As expected, the χ2 value associated to the ensemble cre-
ated with the same constitutive law of the measurements
is always closer to 1 than the inconsistent one. Conse-
quently, χ2-test can provide a useful and cheap preliminary
screening of the generated forecast ensembles.

3.3 Red flag

After the ensemble diagnostic, the RF approach is carried
out for every configuration shown in Table 1. Every
realization of the forecast ensembles is characterized by its
own probability using Eq. 10, where P

(
ψk

)
is derived from

the joint probability of the parameter set used to define the
realization. Table 3 provides for each case listed in Table 1
the realization characterized by the largest probability

Table 2 Outcome of χ2-test used for the choice of the most
appropriate constitutive law for the forecast ensemble

Estimate Measurements Ensemble χ2

parameters constitutive law constitutive law

λ∗ MCC MCC 1.22

λ∗ MCC VEP 1.38

λ∗ VEP VEP 1.47

λ∗ VEP MCC 6.53

k∗ MCC MCC 0.95

k∗ MCC VEP 1.49

k∗ VEP VEP 1.41

k∗ VEP MCC 5.29

λ∗ k∗ MCC MCC 1.32

λ∗ k∗ MCC VEP 1.73

λ∗ k∗ VEP VEP 4.35

λ∗ k∗ VEP MCC 9.51
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Table 3 RF approach:
combination of parameters
with maximum probability of
occurrence

Set max (P (ψk |D)) [%] λ∗ k∗ μ∗ R

1 7.11 0.005591

2 2.84 0.001189

3 8.27 0.004990 0.000958

4 20.33 0.005113

5 5.95 0.000843

6 2.58 0.000151

7 3.90 1.5032

8 27.52 0.004990 0.000958

9 22.65 0.005410 1.4655

10 13.82 0.005520 0.001004 0.000165

11 41.83 0.005365 0.000930 1.5278

12 25.29 0.005437 0.001142 0.000150 1.5157

of occurrence, along with the corresponding parameter
values. The configuration with the largest probability is
not always the one closest to the ‘true’ parameter set.
The reason is that we compare the state ensemble with
the vertical displacements, which are the ‘effect’ through
the geomechanical model of the parameter selection and
not directly parameters themselves. In other words, we are
considering the image of θk through the forward model
G and the RF approach computes a ‘score’ for each of
such images. In some cases, more than one set provides
displacements close to the observation and consequently
has a high probability. This could suggest a possible over-
parameterization of the problem, i.e. different combinations
of the parameter values can be able to reproduce similarly
the available observations. This is usually an unfortunate
situation, where DA is expected to have a low effectiveness
on the parameter characterization.

Despite this, in most cases, there is an important dif-
ference between the largest and the smallest probability.
Therefore, RF can help to preliminary reduce the uncer-
tainties by neglecting the realizations characterized by the
smallest probability of occurrence.

3.4 Ensemble smoother

ES has been employed to find a tentative solution to the inverse
model and reduce the initial uncertainties on the model
prediction. Both state and parameter ensembles are updated
by constraining the model with available measurements.
The quality of the outcome is evaluated through the indices
AE (Eq. 15) and AES (Eq. 16) and their variation (Eq. 17).
Note that in the computation of such indices, the matrix of
updated state variables refers to the solution of the forward
model by using the updated parameter vector.

3.4.1 Parameter constraints

For the test cases of Table 1, the outcome of the ES approach
is provided in Table 4. A positive value of J indicates
a restriction around the true configuration of the updated
ensemble with respect to the prior. It is clear that the
assimilation effectiveness strongly depends on the uncertain
parameter set.

The choice of the set of uncertain parameters has a sig-
nificant impact on the model in relation to the geometry
of the domain, the constitutive law, the observed data, the
boundary conditions and the imposed external load. For
example, the uncertainty associated to the modified com-
pression index λ∗ and the modified swelling index k∗ has a
similar range of variability, as defined in Section 3.1. Nev-
ertheless, the corresponding state ensembles for the MCC
constitutive law (set # 1 and # 2) have very different forecast
AES. A variation of k∗ in the model does not provide signif-
icant changes in the resulting state in term of land vertical
motion, uz. As a matter of fact, k∗ is a parameter mainly
controlling the rock behavior in II-cycle conditions, so it
appears to play a secondary role for the selected produc-
tion program (Fig. 2a). Consequently, in this case ES cannot
help constrain k∗ because variations related to the state
ensemble are lower than the errors associated to measure-
ments. By distinction, variations in λ∗ produce a significant
change in the forecast state ensemble that provide enough
information to constrain the model outcome close to the
observations, with a reduction of the ‘a priori’ parameter
uncertainties.

ES has been applied considering uncertainty related to
each parameter individually and some of their combinations
to evaluate ES capability of conditioning the model in
different situations with the same available observations.
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Table 4 ES approach: AE and
AES for the forecast ensembles
and the relative variation J of
AE and AES from the update
ensembles. The larger J, the
more effective is the
assimilation approach on the
parameter or state (vertical
displacements, uz) ensemble,
that is indicated in column 2

Set Ensemble AEf orecast J [%] AESf orecast J [%]

1 λ∗ 4.159 · 10−1 51 2.429 · 10−1 16

uz 1.432 · 10−1 62 9.260 · 10−2 42

2 k∗ 6.488 · 10−1 –29 3.706 · 10−1 –125

uz 6.331 · 10−3 –37 3.348 · 10−3 –150

3 λ∗ 3.996 · 10−1 49 2.563 · 10−1 30

k∗ 6.488 · 10−1 –20 3.706 · 10−1 –109

uz 1.454 · 10−1 64 1.000 · 10−1 53

4 λ∗ 4.159 · 10−1 71 2.429 · 10−1 51

uz 3.530 · 10−2 69 2.001 · 10−2 45

5 k∗ 6.488 · 10−1 46 3.706 · 10−1 6

uz 5.440 · 10−2 65 3.772 · 10−2 49

6 μ∗ 2.503 · 10−5 43 2.485 · 10−5 42

uz 2.513 · 10−2 42 2.504 · 10−2 42

7 R 1.193 · 10−1 47 9.400 · 10−2 34

uz 4.026 · 10−2 38 3.092 · 10−2 19

8 λ∗ 3.996 · 10−1 54 2.563 · 10−1 31

k∗ 6.488 · 10−1 53 3.706 · 10−1 24

uz 4.650 · 10−2 44 4.519 · 10−2 42

9 λ∗ 3.900 · 10−1 –87 2.483 · 10−1 –190

R 1.348 · 10−1 21 9.623 · 10−2 –10

uz 6.137 · 10−2 15 3.444 · 10−2 –57

10 λ∗ 4.333 · 10−1 38 2.851 · 10−1 7

k∗ 6.089 · 10−1 43 3.501 · 10−1 5

μ∗ 1.325 · 10−5 –165 8.957 · 10−6 –292

uz 4.879 · 10−2 8 4.490 · 10−2 –2

11 λ∗ 4.083 · 10−1 –34 2.351 · 10−1 –117

k∗ 6.351 · 10−1 43 3.380 · 10−1 –3

R 1.276 · 10−1 6 9.295 · 10−2 –28

uz 5.208 · 10−2 –23 4.976 · 10−2 –32

12 λ∗ 3.992 · 10−1 –87 2.308 · 10−1 –206

k∗ 6.144 · 10−1 24 3.927 · 10−1 –12

μ∗ 1.323 · 10−5 -9 9.152 · 10−6 –35

R 5.423 · 10−2 –145 5.373 · 10−2 –145

uz 5.621 · 10−2 –90 4.716 · 10−2 –140

Bold entries are used to emphasize the negative values

The results of Table 4 point out that an over-parameterized
problem can prevent from constraining the model to the
measurements, as in the last four parameter sets. For the
VEP behavior, this can be seen when the set of uncertain
parameters includes both λ∗ and the ratio R (set # 9). In this
case measurements are not enough to constrain the model,
while results of set # 4 and # 7, in which these parameters
are separately considered into the ES approach, provide a
satisfactory reduction of the ensembles spread around the
true configuration.

3.4.2 Prediction of land subsidence

Table 4 suggests that the most satisfactory results can
be obtained in the configurations with uncertain λ∗, sets
# 1 and # 4 for MCC and VEP behavior, respectively.
For these cases, we evaluate the ES capabilities also
in a predictive sense by assimilating 3, 5 and 7 years
of displacement measurements only, with respect to the
assimilation of observation data during all the simulation
period, i.e. 10 years. This is to investigate the use of ES
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during the productive life of the reservoir, introducing into
the DA framework the up-to-date set of measurements. The
resulting forecast and update ensembles are shown in Fig. 4
together with the variation J with respect to the forecast
ensemble of the state variable, i.e. vertical displacements.

As the number of assimilated measurements increases,
the effectiveness of the ES algorithm grows. Using a MCC
model, the assimilation of few observation data enables the
ES to reduce significantly the model uncertainties. In the
case of VEP behavior, the assimilation of three years of
measurements (Fig. 4b) is not enough for constraining the
model, because the spread of the forecast state ensemble
(AES = 0.020) is already smaller than the one for MCC
(AES = 0.092) and so the model characterization is intrin-
sically more difficult. Nevertheless, seven years of observa-
tion data appear to be enough to reduce uncertainties and
improve the model predictive capabilities. In other words,
the continuous assimilation of new land displacement obser-
vations in time appears to be effective for ‘training’ auto-
matically the model, thus increasing its reliability in the
prediction capability.

3.4.3 Influence of measurement covariance matrix

The results presented in Table 4 and Fig. 4 are obtained
with the covariance matrix of the measurement error Cd

described in Section 3.1. Reduction in observation errors,
i.e. increase in measurement reliability, usually implies a
better performance of the DA algorithms [4]. To evaluate
the importance of the measurement error, we reduce the
standard deviation ς in the computation of Cd, i.e. ς2

equal to 1.112 · 10−5 m2/yrp for MCC constitutive law
and to 4.158 · 10−6 m2/yrp for VEP model. Results
provided in Fig. 5 show the outcome of the ES algorithm
for the estimate of the modified compression index λ∗ by
assimilating displacement measurements for the first five
years of the simulation process. These results, compared
to those obtained with the original Cd shown in Fig. 4c,
d, 5a and d, point out a clear improvement in the solution of
inverse problem with an increase of J by over 61%.

3.4.4 Assimilation of compaction measurements

Synthetic measurements of the formation compaction,
ideally measured for instance by the radioactive marker
technique, have been assimilated. We suppose to place a
marker borehole near the GPS location, where the reservoir
is approximately 30 m-thick. Since the initial space between
two adjacent radioactive markers is approximately 10 m, a
maximum number of three compaction measurements are
available for the assimilation. To evaluate the influence of
these additional measurements, we consider four significant
configuration sets of uncertain parameters (set # 1, # 4,

# 6 and # 12). Figure 6 shows the variation J of the AE
and AES indices from the forecast to the update ensemble.
It is the result of ES application when both displacement
and compaction measurements are assimilated. Comparing
Fig. 6 with the results in Table 4 allows to understand when
adding more accurate measurements with a different nature
could be useful.

First, set # 1 and # 4 are considered, with uncertain
λ∗ for the MCC and VEP law, respectively. In these
cases, the assimilation of only GPS measurements allows
to constrain the model. Adding other observations does
not provide a relevant improvement in the ES application.
Then, we consider set # 6, when the modified creep index
μ∗ with the VEP model is uncertain. This parameter has
a low range of variability. In this case, the assimilation
of both displacement and compaction measurements with
the covariance matrix as described in Section 3.1 proves a
significant variation in the ES results, with an improvement
of J of about 107% with respect to the assimilation of
vertical displacements only. Finally, we evaluate the case
of an over-parameterized problem, i.e. set # 12 of Table 1.
Results obtained with the assimilation of both GPS and
marker measurements cannot be considered thoroughly
satisfactory, because of the small, or even negative, values
of J. Nevertheless, they are better than results in Table 4
for the assimilation of surface vertical displacements only,
at least for parameter λ∗, ratio R and displacement
uz.

3.5 Multiple data assimilation

MDA-ES can help improve the effectiveness of the ES
algorithm, especially when there is a strongly non-linear
relationship between the uncertain parameters and the
state variables [16]. To avoid an over confidence in the
observation data, the covariance matrix of measurements
error is multiplied by an inflation coefficient αk at every
assimilation step k. Different algorithms have been recently
developed to define the sequence of αk values, e.g. in [14].
Here, we consider only the simplest option, i.e. a constant
inflation coefficient equal to the total number of successive
assimilations.

3.5.1 Influence of measurement covariance matrix

Application of MDA-ES for the test cases of Table 4
improves the parameters estimation with respect to ES
only when uncertainty is associated to a single parameter.
For the sake of brevity, here these outcomes are not
provided. Better results have been achieved considering a
reduced covariance of the measurement error. Two groups
of simulations are carried out to point out the influence
of the measurement error in the MDA-ES approach. The
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Fig. 4 State ensembles resulting from ES application: maximum land
subsidence in time for the MCC (a, c, e) and the VEP constitutive
laws (b, d, f) by assimilating 3, 5, and 7 years of displacement mea-
surements, respectively. The forecast and update ensembles are grey

and red, respectively, while green stars denote the exact outcome of
the geomechanical model used to get the perturbed observations that
are shown in Fig. 3. Variations J of AE and AES with respect to the
forecast state ensemble are reported
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Fig. 5 Ensembles resulting from
ES application: parameter
ensembles with the original
covariance matrix Cd (a, d) and
the reduced one (b, e) with the
MCC and VEP constitutive law,
respectively; state ensembles
with the reduced Cd for the
MCC (c) and the VEP law (f).
Forecast and update ensembles
are grey and red, respectively.
The AE and AES improvements
J with respect to the forecast
ensembles are reported
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first with the measurement covariance matrix as described
before in Section 3.1 and the second with a reduced one.
In the latter, we consider again Eq. 21 with the parameters
properly changed to obtain a much smaller final error. In
particular, the entries of the measurement noise are sampled
from a normal distribution with zero mean and standard
deviation equal to 1 mm, while the terms of the idealisation
noise have been calculated considering Hurst index p equal
to 1.67 and variance ς2 equal to 2 · 10−5 m2/yrp.

Figure 7 shows a comparison between ES and MDA-
ES for the estimation of parameter set # 1 considering the
original covariance matrix, while in Fig. 8 the reduced one
is used. The forecast and update parameter ensembles for

a single ES application and three MDA-ES assimilation
of vertical displacements are represented. In the first case
(Fig. 7a and b), i.e. for the original covariance matrix,
the final update ensembles of the two approaches appear
quite similar, except for a few outliers. Conversely, for the
reduced covariance matrix (Figs. 8a and b), progressive
improvements at every successive assimilation are regis-
tered and the final ensemble is more clustered and centered
around the true value than the one derived from a single
ES assimilation. The latter behavior is the one expected in
applying the MDA-ES approach. In the numerical experi-
mentations that follow, the reduced measurement covariance
matrix is used.
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Fig. 6 Variation J of AE and
AES indices with respect to the
forecast ensembles reported in
Table 4 when both displacement
and compaction measurements
are assimilated for some
significant sets of uncertain
parameters, i.e. sets # 1, # 4, # 6
and # 12. In brackets, values of
the variation J of AE and AES
indices when only the
displacement measurements are
assimilated (the same as in
Table 4) are reported
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3.5.2 Comparison between ES andMDA-ES for parameter
constraint

In this section, MDA-ES is compared to ES with a
reduced measurement covariance matrix, as explained in

(a) (b)

Fig. 7 Parameter ensembles resulting from the ES (a) and MDA-ES
(b) applications for the estimate of the modified compression index λ∗
with the MCC constitutive law (set # 1) and the original measurement
covariance matrix. Dashed line corresponds to true value

Section 3.5.1. Set # 9 formed by uncertain λ∗ and the ratio
R and an additional set, set # 13 with λ∗ and μ∗ uncertain,
are considered. The sets of Table 4 including the modified
swelling index k∗ have been discarded because of its low
influence for this specific reservoir problem, as discussed

(a) (b)

Fig. 8 The same as Fig. 7 with the reduced covariance matrix of
measurement error
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(a) (b)

(c) (d)

Fig. 9 Parameter ensembles resulting from the ES (a, c) and MDA-ES
(b, d) applications for the estimate of the modified compression index
λ∗ and the ratio R (set # 9) with the reduced measurement covariance
matrix. Dashed line corresponds to true value

in paragraph 3.4.1. Also sets of three and four uncertain
parameters are not taken into consideration to avoid an
over-parameterized solution.

Figures 9 and 10 show the comparison between ES and
MDA-ES for set # 9 and set # 13, respectively. Similarly to
the outcome presented in Fig. 8, Fig. 9 shows that during the
MDA-ES process progressive improvements are achieved
and the final result is better than the one of a single ES
assimilation for the constraining of λ∗. By distinction, if the
set of parameters is formed by λ∗ and μ∗ (Fig. 10), MDA-
ES does not provide any improvement with respect to the
ES results. This is due to the difficulty in the μ∗ estimate by
using vertical land displacements only, as already observed
in Table 4. Similar results are therefore expected for the sets
with three and four uncertain parameters.

(a) (b)

(c) (d)

Fig. 10 The same as Fig. 9 for set # 13, i.e. for the estimation of the
modified compression index λ∗ (a, b) and the modified creep index μ∗
(c, d)

4 Discussion and conclusion

In this work, we analyze the effectiveness of the integration
of DA techniques into numerical models for land subsidence
prediction above producing hydrocarbon reservoirs. The
aim is to define a modern methodological approach able to
take into consideration, quantify and reduce uncertainties
in land subsidence prediction by a progressive ‘training’
of the forward numerical model through the assimilation
of the available pieces of information. The potential and
drawbacks of the different DA approaches have been
investigated in a synthetic test case, representative of
a real-world hydrocarbon producing reservoir buried in
a sedimentary basin. Selected mechanical behaviors and
parameter ranges are typical of the Northern Adriatic
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basin, Italy. On the basis of the numerical experimentation
carried out in the previous sections, the following main
considerations are worth summarizing.

1. Preliminaries. Land subsidence models, as any other
numerical model of real-world processes, are affected
by a number of different sources of uncertainties. The
first preliminary step consists of recognizing the most
influential uncertain factors and, among these, the ones
that can be explicitly included as stochastic variables in
the construction of the model ensembles. For instance,
uncertainties in the subsurface geometry or in the math-
ematical description of the governing processes cannot
be easily quantified, while it is often convenient, and
more supported by available information, to treat some
material parameters as stochastic variables. Uncertain-
ties in the geometry or the mathematical modeling can
be implicitly accounted for by artificially inflating the
errors associated to assimilated measurements. Then,
the appropriate selection of the set of uncertain material
parameters is a fundamental aspect for the application
success. A necessary condition for an effective DA is
that the uncertain material parameter has a significant
impact on the monitored model outcome, i.e. ground
motion in this case, while including parameters with
a low relevance is often detrimental for the quality
of the overall assimilation process. For this reason, a
preliminary sensitivity analysis on the relative influ-
ence of each material parameter on the model out-
come, along with the identification of feasible varia-
tion ranges, is of paramount importance. For instance,
such sensitivity analysis can be quantitatively per-
formed by mean of Sobol’s indices [40], as recently
done in [25, 57, 59].

2. Model diagnostic. Once the most significant govern-
ing parameters are defined, a model diagnostic analysis
is useful to preliminarily evaluate the quality of the
forecast ensemble. This step is important especially to
help identify the most appropriate constitutive behaviour
of deep rocks and recognize the actual representative-
ness of the selected ranges for the uncertain parameter
set. To this aim, here we propose the use of the χ2-test,
which is a simple and inexpensive technique based on
the mismatch between model results and measurements.
The numerical experiments show that χ2-test can be
helpful for choosing the most appropriate constitutive
law as the one better fitting the observation data, i.e. χ2

value closest to one. It should be recalled, however, that
the χ2-test has mainly a qualitative meaning. In case the
outcome of the χ2-test is not definitely clear, as it can
often happen when the quantity and/or quality of the
available measurements is limited, it is useful to keep

more than one ensemble and select the most appropriate
one as new pieces of information come in.

3. Red Flag. The RF technique provides a fast analysis
that characterizes every Monte Carlo realization with its
own probability in a purely Bayesian framework. This
can be regarded as an intermediate step between the
model diagnostic and the actual assimilation process.
In our tests, there is usually an important difference
between the highest and the lowest probability, with a
relatively small number of realizations with a relevant
probability of occurrence. Some exceptions to this
outcome has been found for the cases in which χ2

is lower than one, i.e. when the ensemble should
have been rejected a priori in the diagnostic stage. RF
provides a preliminary idea of the most likely parameter
combination and allows to exclude some realizations
that can be considered too unrealistic. In this way,
a refinement of the feasible ranges for the uncertain
parameter set can be performed, with the possibility
of building more representative model ensembles.
Of course, the most likely parameter combination
along with the expected ranges can change as new
observations become available, hence such a refinement
should be done with some caution, especially when the
amount and quality of such data is limited.

4. Assimilation. The assimilation stage allows to incor-
porate the available measurements and progressively
train the geomechanical model as the monitoring of
the ongoing process proceeds. The outcome of this
stage is a new updated ensemble with a progressively
smaller uncertainty in the model prediction. To this
aim, we have elected to employ the ES and MDA-
ES techniques. ES is a non-sequential DA approach
that provides an update ensemble where both the state
variables, i.e. surface motion in this case, and the mate-
rial parameters are constrained by the observation data.
The ES application mainly depends on three different
aspects: (i) the set of uncertain parameters, (ii) the mea-
surements, and (iii) the error associated to the observa-
tions, i.e. ultimately the definition of the measurement
covariance matrix. First, the uncertain parameter set
has to be actually relevant for the observed process
without leading to over-parametrization, i.e. multiple
combinations can provide similar results with respect
to the measurements. Generally, if the choice of the
uncertain parameter set is consistent with the available
observations, the ES algorithm appears to be especially
suitable for subsidence predictions, with a progressive
model improvement as the quantity of assimilated mea-
surements increases. Of course, the effectiveness of
ES application improves with the decrease of the error
associated to the observations. Hence, the definition
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of the covariance matrix of the measurement error,
which might be also artificially inflated to account for
other sources of uncertainty, plays a fundamental role
in the application of the DA algorithm. Anyway, the
results obtained in the tests investigated herein suggest
ES to be a promising tool to quantify and reduce the
uncertainties in land subsidence predictions. MDA-ES
uses multiple ES applications with an inflated covari-
ance matrix of the measurement error. In principle, it
can be used to improve the ES outcome, especially in
case of a strongly non-linear relationship between state
variables and uncertain parameters. In our numerical
experiments, MDA-ES does not always provide better
results than ES, despite the higher computational cost,
and appears to be strongly influenced by the selection
of the uncertain parameter set and the covariance matrix
of the measurement error. Its use in real-world reservoir
applications should be better investigated in additional
test cases.

On the basis of the considerations above, a tentative
workflow for modern land subsidence simulations above
producing hydrocarbon fields can be defined. In the context
of a synthetic test case, the investigated procedure, consist-
ing of points 1 to 4 above, allows to take into consideration
most of the uncertainties that affect the numerical modeling
of land subsidence above producing hydrocarbon reservoirs,
and then quantify and reduce them as the reservoir devel-
opment proceeds and new monitoring data are incorporated
in the overall model. Further experiences are necessary by
investigating real-world producing reservoirs and assimi-
lating real observation data. These experiences, which are
currently underway, will allow for refining the steps 1-4
above and help define a ‘protocol’ to be followed for state-
of-the-art and reliable predictions of land subsidence.
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