44 research outputs found

    Quantum calculation of inelastic neutron scattering spectra of a hydrogen molecule inside a nanoscale cavity based on rigorous treatment of the coupled translation-rotation dynamics

    Get PDF
    We present a quantum methodology for the calculation of the inelastic neutron scattering (INS) spectra of an H2{\mathrm{H}}_{2} molecule confined in a nanoscale cavity. Our approach incorporates the coupled five-dimensional translation-rotation (TR) energy levels and wave functions of the guest molecule. The computed INS spectra are highly realistic and reflect in full the complexity of the coupled TR dynamics on the anisotropic potential energy surfaces of the confining environment. Utilizing this methodology, we simulate the INS spectra of pp- and oo-H2{}_{2} in the small cage of the structure II clathrate hydrate and compare them with the experimental data

    Clusters containing open-shell molecules. III. Quantum five-dimensional/two-surface bound-state calculations on ArnOH van der Waals clusters (X2Π, n=4 to 12)

    Get PDF
    This paper presents a theoretical study of the bound states of the open-shell OH radical in its ground electronic state(X2Π) interacting with n Ar atoms, for n from 4 to 12. After freezing the geometry of the Arn cage or subunit at the equilibrium structure (preceding paper), we carry out nonadiabatic five-dimensional quantum dynamics calculations on two coupled potential energy surfaces, using an extension of the method previously applied to closed-shell ArnHFclusters [J. Chem. Phys. 103, 1829 (1995)]. The method is based on a discrete variable representation (DVR) for the translational motion of OH relative to Arn, combined with a finite basis representation of the OH hindered rotation and electronic structure, including spin–orbit effects. The pattern of OH hindered rotor levels in clusters is similar to that in Ar–OH itself, though extended over three to four times the energy range for n=4 to 9. Ar12OH has a nearly spherical shell of Ar atoms around the OH, so the anisotropic splitting is very small. For n=10 and 11, the anisotropy may be viewed as arising from holes in an otherwise spherical shell, and the resulting patterns of hindered rotor levels are inverted versions of those for Ar2OH and Ar–OH

    Risk identification in landslide monitoring

    Get PDF
    Monitoring klizišta ima značajnu ulogu u razumijevanju procesa klizanja, što je naročito važno u urbanim sredinama gdje aktiviranje klizišta može posredno ili neposredno ugroziti živote ljudi i nanijeti materijalne štete. U radu se identificiraju potencijalni izvori rizika pri monitoringu klizišta, te se objašnjavaju pojmovi svrhe mjerenja, mjernih veličina, mjerne opreme i rezultata mjerenja. Na primjeru dobro dokumentiranog klizišta Grmoščica u Zagrebu prikazat će se uloga monitoringa klizišta u urbanim sredinama.Landslide monitoring has an important role in the understanding of the landslide process, which is especially important in urban areas where landslide activation may directly or indirectly endanger human lives and cause material damage. Potential risk sources in landslide monitoring are identified in the paper, and terms measurement purpose, measurement parameters, measuring equipment and measurement results, are explained. The role of landslide monitoring in urban areas is presented using an example of well documented landslide Grmoščica in Zagreb

    The Endofullerene HF@C 60 : Inelastic Neutron Scattering Spectra from Quantum Simulations and Experiment, Validity of the Selection Rule and Symmetry Breaking

    Get PDF
    Accurate quantum simulations of the low-temperature inelastic neutron scattering (INS) spectra of HF@C60 are reported for two incident neutron wavelengths. They are distinguished by the rigorous inclusion of symmetry-breaking effects in the treatment and having the spectra computed with HF as the guest, rather than H2 or HD, as in the past work. The results demonstrate that the precedent-setting INS selection rule, originally derived for H2 and HD in near-spherical nanocavities, applies also to HF@C60, despite the large mass asymmetry of HF and the strongly mixed character of its translation–rotation eigenstates. This lends crucial support to the theoretical prediction made earlier that the INS selection rule is valid for any diatomic molecule in near-spherical nanoconfinement. The selection rule remains valid in the presence of symmetry breaking but is modified slightly in an interesting way. Comparison is made with the recently published experimental INS spectrum of HF@C60. The agreement is very good, apart from one peak for which our calculations suggest a reassignment. This reassignment is consistent with the measured INS spectrum presented in this work, which covers an extended energy range

    H2, HD, and D2 in the small cage of structure II clathrate hydrate: vibrational frequency shifts from fully coupled quantum six-dimensional calculations of the vibration-translation-rotation eigenstates

    Get PDF
    We report the first fully coupled quantum six-dimensional (6D) bound-state calculations of the vibration-translation-rotation eigenstates of a flexible H2, HD, and D2 molecule confined inside the small cage of the structure II clathrate hydrate embedded in larger hydrate domains with up to 76 H2O molecules, treated as rigid. Our calculations use a pairwise-additive 6D intermolecular potential energy surface for H2 in the hydrate domain, based on an ab initio 6D H2–H2O pair potential for flexible H2 and rigid H2O. They extend to the first excited (v = 1) vibrational state of H2, along with two isotopologues, providing a direct computation of vibrational frequency shifts. We show that obtaining a converged v = 1 vibrational state of the caged molecule does not require converging the very large number of intermolecular translation-rotation states belonging to the v = 0 manifold up to the energy of the intramolecular stretch fundamental (≈4100 cm−1 for H2). Only a relatively modest-size basis for the intermolecular degrees of freedom is needed to accurately describe the vibrational averaging over the delocalized wave function of the quantum ground state of the system. For the caged H2, our computed fundamental translational excitations, rotational j = 0 → 1 transitions, and frequency shifts of the stretch fundamental are in excellent agreement with recent quantum 5D (rigid H2) results [A. Powers et al., J. Chem. Phys. 148, 144304 (2018)]. Our computed frequency shift of −43 cm−1 for H2 is only 14% away from the experimental value at 20 K
    corecore