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Abstract

We report the first fully coupled quantum six-dimensional (6D) bound-state calcu-

lations of the vibration-translation-rotation (VTR) eigenstates of a flexible H2, HD,

and D2 molecule confined inside the small cage of the sII clathrate hydrate embedded

in larger hydrate domains with up to 76 H2O molecules, treated as rigid. Our cal-

culations use a pairwise-additive 6D intermolecular potential energy surface (PES)

for H2 in the hydrate domain, based on an ab initio 6D H2–H2O pair potential for

flexible H2 and rigid H2O. They extend to the first excited (v = 1) vibrational state

of H2, along with two isotopologues, providing a direct computation of vibrational

frequency shifts. We show that obtaining a converged v = 1 vibrational state of the

caged molecule does not require converging the very large number of intermolecular

TR states belonging to the v = 0 manifold up to the energy of the intramolecular

stretch fundamental (≈4100 cm−1 for H2). Only a relatively modest-size basis for

the intermolecular degrees of freedom is needed to accurately describe the vibra-

tional averaging over the delocalized wave function of the quantum ground state of

the system. For the caged H2, our computed fundamental translational excitations,

rotational j = 0→ 1 transitions, and frequency shifts of the stretch fundamental are

in excellent agreement with recent quantum 5D (rigid H2) results [A. Powers et al.,

J. Chem. Phys. 148, 144304 (2018)]. Our computed frequency shift of −43 cm−1 for

H2 is only 14% away from the experimental value at 20 K.

a)Electronic mail: yohann.scribano@umontpellier.fr
b)Electronic mail: zlatko.bacic@nyu.edu
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I. INTRODUCTION

Hydrogen clathrate hydrates are crystalline inclusion compounds where one or more

hydrogen molecules are encapsulated inside the cavities, or cages, created by the three-

dimensional (3D) framework of hydrogen-bonded water molecules.1–3 Simple hydrogen

clathrate hydrates, that have only hydrogen molecules as guests, were first identified by

Dyadin et al.,4 and later characterized by Mao et al. in more detail.5 They have the classical

structure II (sII),1,2,5 whose cubic unit cell consists of two types of cages. One of them is the

small dodecahedral cage, sixteen per unit cell, each comprised of 20 H2O molecules forming

12 pentagonal faces, hence designated 512. The second type are the large cages, eight per

unit cell, in which 28 H2O molecules are arranged in 12 pentagonal and 4 hexagonal faces

and therefore denoted 51264. Experiments have shown that the small cage can accommodate

only one H2 molecule, while up to four H2 molecules can be encapsulated in the large cage.6

Hydrogen clathrate hydrates have attracted a great deal of interest in recent years, owing to

their potential as economical and environmentally friendly hydrogen storage materials.1,2,7–10

Moreover, hydrogen molecules entrapped in the clathrate hydrate cages constitute fas-

cinating and unconventional chemical systems whose dynamics and spectroscopy are thor-

oughly dominated by strong quantum effects, to a degree matched only by light molecules

inside fullerenes.11 The pronounced quantum effects have multiple sources; one of them is

the quantization of the translational center-of-mass (c.m.) degrees of freedom (DOFs) of

the guest molecule(s) due to the nanoscale confinement in the clathrate cage, small or large

(particle-in-a-box effect). The confining potential of the hydrate cage couples the quantized

translational DOFs to the also quantized rotational DOFs of the hydrogen molecule(s).

The resulting translation-rotation (TR) energy level structure is sparse, owing the the low

molecular mass of H2/HD/D2, their large rotational constants, and the small size of the

hydrate cavities. The salient features of the TR eigenstates of a single hydrogen molecule

in the cages of the sII clathrate hydrate, notably the splittings of both the translational

fundamental and rotational levels, as well as their manifestations in the inelastic neutron

scattering (INS) spectra, have been characterized by Bačić and co-workers through quan-

tum 5D bound-state calculations12–15 and rigorous computations of the corresponding INS

spectra.15–19 Quantum TR dynamics of multiple hydrogen molecules in the large hydrate cage

has been investigated by means of the diffusion Monte Carlo (DMC)20 and path-integral
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molecular dynamics (PIMD) simulations,21 and also by fully coupled eigenstate-resolved

calculations.22–24 In all these calculations, the hydrogen-bonded clathrate hydrate frame-

work was treated as rigid. In a recent study,25 this constraint was relaxed partially, by

performing quantum 5D calculations of the TR levels of H2 in the small sII hydrate cage,

while taking into account the quantum delocalization of the proton nuclei of the framework

water molecules arising from their hindered rotations about the fixed positions of their O

atoms.

Besides giving rise to the TR energy level structure, the encapsulation of hydrogen

molecules in the cages of clathrate hydrates results in the shift in the frequency of the

H2 intramolecular stretching vibration away from that in the gas phase. This frequency

shift is readily observable in the Raman spectra of the binary tetrahydrofuran (THF) +

H2 sII hydrate, where the large cages are completely occupied by the THF while the small

cages are singly occupied by H2, and simple sII hydrates in which H2 molecules are the

only guests.10,26,27 The vibrational frequencies of H2 molecules encapsulated in the sII hy-

drates are always lower than, i.e., redshifted, relative to, the gas-phase H2. The largest

redshift, −34 cm−1, is observed in the Raman spectra of the THF + H2 sII hydrate, and can

be assigned unambiguously to the singly H2 occupied small cage.10,26,27 The same redshift

of −34 cm−1 appearing in the Raman spectra of the simple sII hydrate is therefore also

attributed to H2 in the small cage.

The Raman spectra of the simple II hydrate also display bands redshifted by −26, −18,

and −11 cm−1, respectively,10,26,27 that must represent contributions from the large cages

whose H2 occupancy ranges between two and four. However, associating each of these

redshifts with a particular H2 occupancy of the large cages proved to be nontrivial. Initially,

the redshifts of −26, −18, and −11 cm−1 were interpreted in terms of triply, doubly, and

singly occupied large cages, respectively.26 Subsequent very careful experiments that involved

multiple cycles of heating and quenching of the sample and measurements of the amounts

of H2 released in each led to the essentially opposite assignment of these three redshifts to

double, triple, and quadruple occupancies of the large cages, respectively.27 The observed

trend in the H2 redshift can be understood in terms of the interplay between two kinds of

interactions.27 One of them, the attractive interaction between H2 and the cage, softens the

intramolecular stretch potential of H2 and lowers its vibrational frequency relative to the

gas-phase. As the large-cage occupancy of the large cage increases, the tighter packing and
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the largely repulsive H2–H2 interactions lead to the increasing vibrational frequency of H2,

and the decreasing redshift. The fact that the H2 vibrational frequency is redshifted even for

the highest, quadruple occupancy of the large cage suggests that the attractive guest-host

interaction always remains dominant over the repulsive H2–H2 interactions.

In the case of sII hydrogen hydrates, it has been possible to assign with confidence the

observed frequency shifts to different H2 occupancies of the small and large clathrate cages

largely guided by the experimental data. But in general, e.g., molecular hydrogen in metal-

organic frameworks (MOFs),28,29 reliable decoding of the information contained in the vibra-

tional frequency shifts regarding the H2 occupancies of the cavities of nanoporous materials,

and other structural as well as dynamical aspects of the entrapped H2, requires theoretical

methods capable of reliably calculating the frequency shifts. This is a highly challenging

task, for two reasons. First, the problem is inherently high-dimensional. Even if the hydrate

framework is treated as rigid, the dimensionality of the calculations is 6nD, where n is the

number of H2 molecules considered; thus, for n = 1− 4, one has to be able to deal with the

problem whose dimensionality ranges from 6D to 24D. This requires having accurate high-

dimensional potential energy surfaces (PESs), that incorporate the H2–clathrate interactions

and, in the case of multiple occupancy, the interactions among the guest H2 molecules. Both

interactions must include the dependence on the H2 intermolecular stretch coordinate and its

coupling to the intermolecular degrees of freedom. Second, dynamical quantum effects and

anharmonicities in both intra- and intermolecular DOFs play a significant role, particularly

at the low temperatures of the Raman spectroscopy measurements. Consequently, these key

features have to be fully accounted for in any first-principles theoretical method aiming to

generate accurate frequency shifts of encapsulated hydrogen molecules.

Within the past decade, a number of approaches, involving a variety of approximations,

have been taken to address this fundamental and difficult problem. In some of them, the

H2 molecules encapsulated in the isolated small or large hydrate cages were taken to be

frozen in the geometry corresponding to the minimum energy of the system.30–32 As a result,

nuclear quantum effects are left out, in particular the averaging over the large-amplitude

intermolecular vibrations of the guest H2 molecules. In addition, since only isolated clathrate

cages are considered, the effects of the condensed-matter environment are unaccounted for.

This problem has also been treated through a combination of classical molecular dynamics

(MD) and PIMD simulations with electronic structure calculations at the DFT (B3LYP)

5



and MP2 levels.33 The H2 vibrational frequencies calculated in 1D for the H2 intermolecular

coordinates taken from many snapshots of the MD simulations covered a broad distribution

of frequencies that extended to that of the free H2 at 4155 cm−1. Their maxima agree

reasonably well with experiment, after a scaling factor was introduced in the calculations.

Finally, classical MD simulations within the DFT framework were performed for an sII

hydrate unit cell, and the H2 vibrational spectra were calculated by Fourier transforming

the H-H bond length autocorrelation function.34 This classical treatment does not account

for the quantum effects. Moreover, it gives the vibrational spectra that are shifted by 100-

150 cm−1 to higher frequencies relative to the experimental results, and above the stretch

fundamental of free H2.

Very recently, Powers et al.35 have calculated the frequency shift of H2 inside the small

cage of the sII hydrate, isolated and embedded in spherical hydrate domains of increasing

size, in order to investigate the effect of the condensed-phase environment. The approach

employed was developed earlier by Bačić and co-workers for the purpose of computing the HF

stretch frequency shift in ArnHF clusters.36–39 The H2 frequency shift was obtained by means

of the quantum 5D bound-state calculations of the coupled TR eigenstates on a pairwise-

additive intermolecular PES for rigid H2 in a (rigid) hydrate domain, that depends on the

vibrational state of H2, v = 0 or v = 1. This 5D PES was constructed using the 5D (rigid-

monomer) pair potential for the interaction of H2 in the ground and first excited vibrational

states, respectively, with H2O, obtained by averaging the full-dimensional (9D) ab initio PES

of H2–H2O by Valiron et al.40 over the vibrational ground state wave function of H2O and the

vibrational wave functions of H2 for v = 0 and v = 1, respectively. Implicit in this approach

is the assumption of dynamical decoupling between the H2 intramolecular vibration and the

TR modes, well-justified by their large energy separation. The H2 vibrational frequency

shift of ∼ −44 cm−1 calculated for the largest clathrate domain considered, with 1945

H2O molecules, that mimics the condensed-phase environment, was about 10% larger in

magnitude than that obtained for the isolated small cage. This 0 K value agrees well with the

frequency shifts measured at 20 K,26 −37 cm−1, and at 76 K,27 −34 cm−1. It was suggested

that improving further the agreement with experiment may require including many-body

interactions, three-body in particular, missing from the pairwise-additive intermolecular PES

employed.35

Motivated in part by this suggestion and other considerations, Qu and Bowman41 have
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included ab initio 3-body H2–H2O–H2O interactions, in addition to the 2-body H2–H2O

interactions, in their diffusion Monte Carlo (DMC) calculations of the vibrational frequency

shift of H2 encapsulated in the (rigid) small cage of the sII hydrate, without and with

surrounding water molecules. For the largest hydrate domain considered having 172 H2O

water molecules, calculations based on 2-body interactions only yielded the frequency shift

of about −26 cm−1, while the inclusion of the 3-body interactions resulted in the shift of

−40± 4 cm−1, in good agreement with experiment, in particular −37 cm−1 at 20 K.26

The DMC method employed by Qu and Bowman41 is well-suited for ground-state calcula-

tions, but already the first excited state poses a challenge arising from the need to locate the

node in the wave function, that is generally unknown (unless it can be determined from sym-

metry considerations42). The calculations for the first excited vibrational state of the caged

H2 were done in the fixed-node approximation, applying the “adiabatic” method of McCoy

and co-workers43 to find the position of the node. However, determining the correct nodal

surface in a 6D system is very difficult, virtually impractical. Therefore, Qu and Bowman

made the approximation that the node is located entirely on the H-H intramolecular stretch

coordinate and is independent of the TR coordinates of H2, thereby reducing the search for

its position to 1D. This is equivalent to the assumption that the intra- and intermolecular

coordinates of the caged H2 are decoupled, justified by the large energy separation between

the two types of modes.41

Thus, the quantum methodologies employed in the two recent computations of the H2

vibrational frequency shift in the small sII hydrate cage,35,41 although entirely different,

both rely on the approximation of no coupling between the high-energy intramolecular vi-

brational mode of H2 and its low-energy TR modes. There is no reason to doubt its validity

for this system (in both approaches), and the accuracy of the results it yields. Still, one can

ask whether it is possible to perform quantum 6D calculation of the bound states of H2 in

the small cage up to, and including, the energy of the first excited (v = 1) intramolecular

vibrational state (the stretch fundamental), around 4100 cm−1, treating the intra- and in-

termolecular (TR) degrees of freedom as fully coupled, i.e., not invoking their separability.

After all, fully coupled full-dimensional (6D) quantum calculations of the vibrational levels

of non-rigid molecular systems, such as (HF)2,
44 (HCl)2,

45 and CO on Cu(100),46 have been

feasible for some 25 years. In some cases, e.g., (HCl)2
47 and CO on Cu(100),46 the quantum

6D calculations yielded the energies of the intramolecular stretch fundamental(s), and thus
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their shifts from the respective gas-phase values.

Nevertheless, it has been generally thought that for molecular systems which have both

high-frequency intramolecular mode(s) and low-frequency intermolecular vibrations, such

as H2 in the small sII hydrate cage, and hydrogen-bonded and van der Waals (vdW) com-

plexes, rigorous calculation of fundamental excitation(s) of their intramolecular mode(s),

e.g., the v = 1 vibrational state of the encapsulated H2 that is 6D for a rigid cage, would

be an extremely difficult and prohibitively costly task. The main source of the difficulty

was the assumption that the very large number of highly excited intermolecular vibrational

eigenstates in the manifold of the intramolecular ground state below the energy of the in-

tramolecular excitation(s) all have to be converged in order to compute accurate fundamental

intramolecular excitation(s). In this paper we demonstrate that certainly for the intramolec-

ular stretch fundamental of H2 (HD, D2) inside the small cage of the sII hydrate, and its

frequency shift, this widely held view is not correct, making this problem entirely tractable.

We present the results of the fully coupled quantum 6D calculations of the vibration-

translation-rotation (VTR) eigenstates of a single flexible H2, HD and D2 molecule entrapped

in the (rigid) small cage of the sII hydrate. We show that computing the converged energy

of the first excited (v = 1) intramolecular vibrational state of the caged H2 (and the isotopo-

logues) at ≈4100 cm−1 requires converging only the TR states in the v = 0 manifold up to

at most 400-450 cm−1 above the ground state. Guided by our previous work,15,35 quantum

6D calculations of the coupled VRT eigenstates, that extend to the v = 1 state and its

frequency shift away from the gas-phase value, are performed for H2 encapsulated inside the

spherical sII hydrate domains of increasing radius treated as rigid. The 6D intermolecular

PES for flexible hydrogen molecule inside the hydrate domain utilized in these calculations

is constructed in a pairwise additive fashion, based on an ab initio 6D H2–H2O pair poten-

tial. The TR eigenstates and vibrational frequency shifts computed for H2, HD, and D2

are compared with the available experimental data, as well the results of the quantum 5D

calculations in Ref. 35.

The paper is organized as follows. Methodology is described in Sec. II. In Sec. III,

we present and discuss the results. Section IV summarizes the work and outlines possible

extensions.
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II. COMPUTATIONAL METHODOLOGY

A. Clathrate hydrate domains and the ab initio 6D H2-H2O pair potential

The three spherical sII clathrate hydrate domains used in this work are identical to those

generated previously by Bačić and co-workers,15 and employed in our recent quantum 5D

H2 frequency shift calculations.35 They are carved out of the 3 × 3 × 3 supercell of the

sII hydrate.15 The three domains of increasing size and number of H2O molecules N have

the cutoff radii set to (a) 5.0 Å, enclosing only the N = 20 water molecules of the small

dodecahedra cage itself; (b) 7.5 Å, encompassing additional 20 H2O molecules, for the total

of N = 40 water molecules; and (c) 9.0 Å, encompassing N = 76 water molecules that form

the first three complete solvation shells around H2.
15 In our previous study,35 the largest

hydrate domain considered was much larger and included 1945 water molecules. However,

that study also showed that the frequency shift computed for this domain differs by only

3% from that obtained for the N = 76 domain. Therefore, in the present work we do not

go beyond the sII hydrate domain containing N = 76 water molecules. In the bound-state

calculations the domains are taken to be rigid.

For the 6D intermolecular PES of flexible H2 inside the domain with N water molecules,

denoted VH2−domain, only one- and two-body terms of its many-body expansion are retained:

VH2−domain(qh) = V
(1b)
h (r) +

N∑
i

V
(2b)
h,wi

(qh,Ξi). (1)

Here, V
(1b)
h (r) is the one-body term for the intramolecular stretching coordinate (r) of the

hydrogen molecule. For it we use the corresponding one-body term in the many-body

representation of the PES for H2 in the sII hydrate by Bowman and co-workers.48

The second term in Eq. (1) represents the summation over the two-body interactions

V
(2b)
h,wi
≡ VH2−H2O(qh,Ξi) between the hydrogen molecule and each of the N water molecules

in the domain. The coordinates of H2 are qh ≡ {R,ω, r} where R is the vector pointing

from the center of the confining small cage, that is also the origin of the space-fixed (SF)

Cartesian frame attached to the cage, to the center of mass (c.m.) of H2, while ω ≡ (θ, φ)

are the polar and azimuthal angles, respectively, that specify the orientation of H2 relative

to the SF frame. The position vector R can be expressed either in terms of the SF Cartesian

coordinates {x, y, z},12,35 or the spherical polar coordinates {R,Ω}, where R ≡ ||R||, and
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Ω ≡ (Θ,Φ) are the polar and azimuthal angles of R relative to the SF axes.49 Ξi denotes

the coordinates of the ith water molecule in the domain; these are fixed since the domains

are assumed to be rigid.

The 6D pair potential VH2−H2O(qh,Ξi) is derived from the accurate full-dimensional (9D)

ab initio H2–H2O pair potential V08 of Valiron et al.40 In this 9D PES, the flexibility of

H2 and H2O monomers is included as a correction to the rigid-monomer dimer 5D PES,

computed as a Taylor expansion around the equilibrium geometries of monomers. The 9D

PES V08 was obtained by combining standard CCSD(T) calculations with the explicitly

correlated CCSD(T)-R12 calculations, and it is expected to provide the currently most

accurate description of the H2–H2O interaction, with an accuracy of a few cm−1 in the

region of the van der Waals minimum.40 In this work, the 9D H2–H2O PES was reduced to

the 6D pair potential, for flexible H2 and rigid H2O, by fixing the intramolecular coordinates

of H2O to their values in the ground vibrational state (OH bond length = 1.843 a0 and the

HOH bending angle = 104.41◦). The accuracy of this procedure is comparable to that of

averaging the 9D PES over the vibrational ground-state wave function of H2O. Finally, the

intermolecular coordinates employed in the V08 potential are transformed numerically to

the coordinates used for the V
(2b)
h,wi

(qh,Ξi) term in in Eq. (1).

B. Quantum 6D diffusion Monte Carlo calculations

Although the focus of this study is on the excited VTR eigenstates, we also use the

diffusion Monte Carlo (DMC) method to compute in 6D the VTR ground-state energy of

flexible H2, HD, and D2 inside the rigid water domains. This approach simulates a diffusion

process in imaginary time on a given PES. The general DMC approach has been described

in detail in Ref. 50 and here we use a standard (i.e. not rigid body) formulation of the

algorithm for the caged molecule, while the cage itself remains fixed.

The simulations are performed using a revised parallelised version of the Xdmc code

developed by Benoit51 (see also Ref. 50 for implementation details). For each simulation

in this study we use 1000 replicas, stabilization periods of 61 500 cycles (H2), 80 900 cycles

(HD) and 108 300 cycles (D2) with ∆τ = 5 a.u., and an averaging phase of 1000×100 cycles

with ∆τ = 1 a.u.
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C. Quantum 6D calculations of the coupled vibration-translation-rotation

eigenstates

The 6D Hamiltonian for the coupled VTR motions of a vibrating diatomic molecule AB,

that in this study corresponds to H2 and its isotopologues HD and D2, inside a rigid clathrate

hydrate domain can be written as

Ĥ6D = − ~2

2mAB

∇2 − ~2

2µAB

∂2

∂r2
+

ĵ2

2µABr2
+VH2−domain(R,ω, r), (2)

where mAB and µAB are the total mass and the reduced mass of AB, respectively, while

R, ω and r were defined in Sec. II A. ∇2 is the Laplacian associated with R, and ĵ2 is the

operator associated with the square of the rotational angular momentum of AB. For the

isotopic masses of hydrogen, the values mH = 1.008 g.mol−1 and mD = 2.0141 g.mol−1 were

used.

1. The Smolyak scheme approach with ElVibRot59

In most, although not all, of the calculations performed in this study, the AB c.m. position

vector R in the Hamiltonian in Eq. (2) is expressed in terms of the Cartesian coordinates

{x, y, z}, and ω ≡ (θ, φ). Furthermore, the operator ĵ2 of Eq. (2) is expanded in terms

of partial derivative operators, ∂
∂θ

and ∂
∂φ

. For this choice of {x, y, z, θ, φ, r} coordinates,

we have used the Smolyak scheme approach52 introduced by Avila and Carrington53–55 and

also proposed by Lauvergnat and Nauts.56–58 More recently, it has been used to calculate

the energy levels of H2 in a clathrate hydrate.35,60 In the Smolyak scheme, the single large

direct-product basis or grid is replaced by a sum of small direct-products, denoted as SrepLS
:

SrepLS
=

LS−n+1≤|L|≤LS∑
L=[`1,...,`n]

(−1)LS−|L|C
LS−|L|
n−1 S1

`1
⊗ . . . Sn`n , (3)

where Si`i represents the ith primitive basis or grid. The parameter `i defines the size of

this primitive basis, nbi(`i), or grid, nqi(`i), as shown in Table I and |L| =
∑
`i. The

size of the non-direct product grid or basis SrepLS
in Eq. (3) is determined through the

parameter LS. In the present study, five (n = 5) types of primitive basis sets are required:

4 harmonic-oscillator (HO) basis sets for the description of the vibrational and translational

DOFs of AB (associated with the r, x, y, z coordinates) and spherical harmonics Y m
j (θ, φ)
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for the rotational DOFs of AB (coordinates θ and φ). The corresponding primitive grids

are, respectively, the Gauss-Hermite quadrature for the HO basis sets and the Lebedev grid

points for the spherical harmonics. In order to minimize the number of basis functions, the

HO basis sets are scaled, such that the arguments of the basis are ui = si · (Qi−Q0
i ), where

si and Q0
i are the scaling parameter and the center, respectively, of the ith basis set. In this

work, Q0
i has the values of 1.41 bohr for the intramolecular stretch coordinate and zero for

the translational DOFs, for all three isotopologues. For the translational DOFs (i = 1− 3),

the HO scaling parameter si is chosen to be 1.2 for H2 and 1.3 for HD and D2. For the

intramolecular stretching mode (i = 4), the scaling parameter s4 has the values 4.4, 4.7 and

5.2 for H2, HD, and D2, respectively.

The desired 6D VTR eigenstates are obtained by direct diagonalization of the Hamiltonian

in Eq. (2) in this basis.

2. Filter diagonalization in a direct-product basis

An alternative approach employed in this study is to compute the VTR eigenstates of the

6D Hamiltonian in Eq. (2) in selected regions of the energy spectrum, utilizing the Cheby-

shev variant61 of filter diagonalization,62 together with the direct-product basis described

below. The AB c.m. position vector R in Eq. (2) is now expressed in terms of the spheri-

cal polar coordinates {R,Ω}, with R ≡ ||R||, and Ω ≡ (Θ,Φ), so that the complete set of

coordinates is {R,Θ,Φ, θ, φ, r}. The matrix representation of the Hamiltonian is formed in

a basis consisting of the product functions

|n, l,ml, j,m, rγ〉 ≡ |n, l,ml〉|j,m〉|rγ〉, (4)

where n = 0, 1, . . . , nmax, l = n, n − 2, . . . ≥ 0, |ml| = 0, 1, . . . , l, j = 0, 1, . . . jmax, |m| =

0, 1, . . . j, and γ = 1, . . . γmax. Here,

〈R,Θ,Φ|n, l,ml〉 ≡ NnlR
le−βR

2/2L
(l+1/2)
n−l
2

(βR)Y ml
l (Θ,Φ) (5)

are eigenfunctions of the 3D isotropic HO (e.g., see the supplementary material from Ref.

49) having the angular frequency β/mAB, 〈θ, φ|j,m〉 ≡ Y m
j (θ, φ), and the |rγ〉 constitute a

discrete variable representation (DVR)63 derived from the eigenfunctions of a 1D oscillator
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of mass µAB moving in a Morse potential of the form

VMorse(r) = D

[
1− e−α(r−re)

]2
, (6)

where D, α and re are constants chosen so that VMorse(r) ' V
(1b)
h (r) in Eq. (1). The specific

parameters that we have used in conjunction with this basis (all in a.u.) are as follows:

D = 0.1744, α = 1.02764, re = 1.40201, and β = 2.9889. We note that because of the Pauli

principle, j can be either even (para-H2) or odd (ortho-H2).

The Chebyshev variant of filter diagonalization requires the repeated application of Ĥ6D

in Eq. (2) on an initial, random state vector. This is readily accomplished by matrix-vector

multiplication for the kinetic-energy portion of Eq. (2). The ∇2 and ĵ2/r2 parts of Ĥ6D have

analytic matrix elements in the basis of Eq. (4). The matrix elements of ∂2

∂r2
are diagonal in

all the basis-set indices except γ, and the 〈rγ′ | ∂
2

∂r2
|rγ〉 can be straightforwardly obtained by

numerical transformation of the matrix elements from the Morse-eigenvector representation

to the Morse-DVR one. To operate with the potential-energy portion of Eq. (2), we first

transform the state vector to a grid representation |Rρ, (Θ,Φ)ξ, (θ, φ)η, rγ〉, where the Rρ

(ρ = 1, . . . Nρ) are associated-Laguerre quadrature points, and the (Θ,Φ)ξ (ξ = 1, . . . Nξ)

and the (θ, φ)η (η = 1, . . . Nη) are Lebedev quadrature points. We then multiply the state

vector at each grid point with the value of VH2−domain at that grid point. Finally, we transform

the result back to the |n, l,ml, j,m, rγ〉 representation. In the present study, the grid sizes

Nρ, Nξ, and Nη are 10, 110, and 38, respectively.

3. Obtaining converged first excited vibrational state of H2 and the

isotopologues

As outlined in the Introduction, it has been generally assumed that a converged fully

coupled quantum 6D calculation of the high-energy v = 1 vibrational state of the caged H2

would necessarily involve converging a very large number of the VTR states in the v = 0

manifold lying below it. This of course would require diagonalization of a prohibitively large

matrix of the 6D VTR Hamiltonian, making the task virtually intractable.

However, convergence tests performed for the quantum 6D calculations utilizing the

Smolyak scheme approach, of the VRT levels of H2 inside the small dodecahedral cage

with 20 water molecules reveal an entirely different picture. The calculations using different
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LS values for the basis set (LB = 6) and for the grid (LG = 7), that generate 8246 basis

functions and 460,000 grid points, yielded 4120.9 cm−1 as the energy of the first excited

(v = 1) vibrational state of H2 (for the TR DOFs in the ground state). The results shown

in Tables III and IV are obtained utilizing this basis. Increasing LB to 7 and LG to 8 gives

17,900 basis functions and 1,167,282 grid points. Despite more than doubling the basis set

size, the energies of the v = 1 vibrational state calculated for LB = 6 and LB = 7 differ

less than 0.1 cm−1, indicating its high degree of convergence. In contrast, comparison of the

results of the two calculations shows that the highly excited TR states in the v = 0 manifold,

close in energy to the v = 1 state are not converged at all. In fact, only the v = 0 TR states

with excitation energies up to 400–450 cm−1, far below the v = 1 state, are converged to

within 1 cm−1.

Thus, what emerges from these calculations is the unexpected result that obtaining a

well-converged energy of the v = 1 vibrational state of H2 does not require having converged

high-lying v = 0 TR states in its vicinity and below. This suggests that the latter are very

weakly coupled to the H2 stretch fundamental and therefore, it confirms the validity of our

previous 5D results35.

Quantum 6D calculations on the same system using filter diagonalization and a direct-

product basis described above confirm this finding and the conclusion, and go one step fur-

ther. The basis set parameters (nmax, lmax, jmax, γmax) ranging from (7, 7, 4, 8) to (10, 6, 4, 11)

give rise to basis sets ranging in size from 14,400 to 30,030. Although differing in size by

more than a factor of two, these basis sets, when used in the quantum 6D calculations, all

give the energies of the v = 1 vibrational state that are to within 0.1 cm−1 of each other,

and converge on 4121.1 cm−1. This result is very close to 4120.9 cm−1, the value obtained

for the v = 1 state with Smolyak scheme approach.

A very interesting feature of the results of the filter-diagonalization calculations is that,

owing primarily to the low jmax = 4, the computed TR states of the v = 0 manifold

extend only up to excitation energies of 800 to 1500 cm−1, depending on the size of the

basis, some 2500 cm−1 below the energy of the v = 1 state. Thus, there are no v = 0

TR states close in energy to the v = 1 state. Moreover, only the TR states up to about

200 cm−1 above the ground state are well-converged. Despite that, the calculated energy of

the H2 stretch fundamental is virtually identical, to within 0.2 cm−1, to that obtained by

the Smolyak scheme approach, which does generate TR states of the v = 0 manifold, albeit
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not converged, in the neighborhood of the v = 1 state.

The surprising conclusion that emerges from the Smolyak scheme approach and filter-

diagonalization calculations above is that the converged first excited state of H2 stretch can

be obtained without (a) converging all TR states in the v = 0 manifold up to its energy, or

(b) having any highly excited v = 0 TR states at all within a couple of thousands of wave

numbers. This finding points to extremely weak coupling between the v = 1 vibrational

state of H2 and the high-lying v = 0 TR states. We do not have a formal theoretical

explanation for this weak coupling at the present time. However, the disparity between the

nodal patterns of the states involved, completely irregular for the highly excited TR states

vs. a smooth one, with a single node for the v = 1 state, are likely to figure prominently in

any theoretical model.

Both the Smolyak scheme approach and filter-diagonalization calculations also demon-

strate that in order to compute a highly converged H2 stretch fundamental one (only) needs

to use a basis for the intermolecular DOFs that can provide an accurate description of

the vibrational averaging over the large-amplitude TR motions in the delocalized quantum

ground state of the system. It should be stressed that this basis is much smaller than the

one that would be required to get converged highly excited TR eigenstates in the vicinity

of the v = 1 state. That accurate calculation of the vibrational shift in systems dominated

by quantum effects must take into account averaging over the large-amplitude motions was

demonstrated first for the ArnHF clusters.36–39

III. RESULTS AND DISCUSSION

Fig. 1 displays the 3D isosurface plot of the spatial distribution of H2 molecule encapsu-

lated in the small cage of the sII hydrate, from the 6D DMC calculation. It is clear from it

that the wave function of the caged H2 is delocalized already in the ground state. The 3D

spatial distribution is nearly spherical, reflecting the weakly hindered rotation of H2 inside

the cage. The DMC-calculated ground-state energies of H2, HD, and D2 in the small cage

are shown in Table II. Their positive values result from the relative magnitudes of two con-

tributions: (i) The interaction between H2 and the cage; this contribution is negative since

the reference energy corresponds to H2 at large distance from the cage. (ii) The zero-point

energy (ZPE) of the H2 intramolecular vibration, about 2179 cm−1 for the free H2. For H2,
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the ground-state energy from the DMC calculation, 1441 ± 10 cm−1, compares favorably

with the E0 value in Table III, 1438.3 cm−1, computed for H2 in the small cage using the

Smolyak scheme approach. Good agreement between these two results provides additional

confirmation of the accuracy of the Smolyak scheme approach.

In Table III, we report the energies of the fundamental translational excitations and the

rotational j = 0→ 1 transitions of H2 in the ground vibrational state (v = 0), as well as the

frequency ν of the H2 stretch fundamental (v = 1) and the corresponding frequency shift ∆ν,

for three sII hydrate domains with the number of water molecules N equal to 20 (isolated

small cage), 40, and 76. These results are from the quantum 6D calculations employing the

Smolyak scheme approach. Shown for comparison are the corresponding results from the

quantum 5D calculation for the same hydrate domains in Ref. 35, in which the H2 molecule

is treated as rigid, and the available experimental data pertaining to these quantities.26,27,64

Even a cursory inspection of Table III reveals a striking agreement between the results

of the fully coupled quantum 6D calculations with those from the quantum 5D, rigid-H2

treatment, for all three domains. For the translational excitations the agreement is better

than 0.5 cm−1, while the 6D and 5D rotational excitations agree to about 1 cm−1.

Excellent agreement between the 6D and 5D calculations in Table III extends to the H2

vibrational frequency shift as well. In our quantum 6D calculations, the frequency shift ∆ν

for a given hydrate domain is obtained as the difference between the frequency ν of the

H2 stretch fundamental computed in 6D for this domain and the free-H2 stretch frequency

νfree evaluated for the one-body potential V
(1b)
h (r) in Eq. (1) (the νfree values for H2, HD,

and D2 are given in Table IV). For the three hydrate domains considered, the difference

between the frequency shifts computed in 6D and 5D is very small, less than 0.5 cm−1. This

confirms the remarkably high accuracy of the quantum 5D method for computing vibrational

frequency shifts used in Ref. 35 and earlier.36–39 Moreover, the fact that all results of the

6D and 5D calculations, translational and rotational excitations and frequency shifts, agree

so exceedingly well points to a high degree of decoupling between the high-frequency H2

intramolecular stretch vibration and the low-frequency intermolecular TR modes.

Table IV displays the results for H2, HD, and D2 encapsulated inside the small cage

embedded within the sII hydrate domain having 76 water molecules, from the quantum 6D

calculations employing the Smolyak scheme approach. The computational results shown for

H2 and the isotopologues include the fundamental translational excitations and the rota-
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tional j = 0 → 1 transitions in the v = 0 state, and the fundamental stretch frequency

ν, and its shift ∆ν. The pertinent experimental data are included for comparison. As ex-

plained in Sec. II A, the sII hydrate domain with 76 H2O molecules, that complete the first

three hydration shells surrounding the hydrogen molecule,15 is chosen primarily because the

magnitude of the H2 frequency shift computed previously (in 5D) for this domain35 is only

3% smaller than the shift calculated for the largest domain comprised of 1945 H2 molecules,

intended to mimic bulk sII hydrate. Thus, the domain of this size captures virtually all of

the condensed-phase effect on the vibrational frequency shift, and on the TR excitations.15

The splitting of both the translational fundamental and j = 0 → 1 transition for all

three isotopologues into three components, evident in Table IV (and also in Table III),

has been discussed previously,12,13,15,35 and is caused by the anisotropies, radial and angular,

respectively, of the cage environment. For the isotopologues for which the experimental data

are available, H2 and HD, the calculated splittings are in general substantially larger than

the measured values, especially for the rotational j = 0 → 1 transition. The implication is

that the pairwise-additive 6D PES employed overestimates the anisotropies of the H2-hydrate

interaction, angular anisotropy in particular. This has been attributed to nonadditive many-

body interactions,13 that are missing from this pairwise-additive PES. Therefore, it would

be interesting to repeat these quantum 6D calculations for the H2-hydrate PES that, in

addition to the 2-body H2–H2O interactions, would incorporate the 3-body H2–H2O–H2O

interactions, such as those computed by Bowman and co-workers,41,48 and see to what degree

this would improve the agreement between the calculated and measured TR excitation

energies.

The theoretical frequency shifts ∆ν reported in Table IV for H2, HD, and D2 are obtained

as the difference between the frequency ν of the stretch fundamental calculated in 6D for

each of the isotopologues inside the domain with 76 H2O molecules and its gas-phase value

νfree (in Table IV) evaluated for the one-body potential V
(1b)
h (r) in Eq. (1). The vibrational

frequency shifts computed in this way are −41.9 cm−1 for H2, −36.3 cm−1 for HD and

−30.3 cm−1 for D2. As expected, the shifts decrease in magnitude with the increasing mass

of the isotopologue. However, the ratio |∆ν/ν| is virtually constant for H2, HD, and D2,

and equal to 0.010. In other words, |∆ν| ≈ 1% of ν for the three isotopologues.

As mentioned earlier, the frequency shift from the quantum 5D calculations for H2 in the

small cage within the domain with 76 water molecules is ∼3% smaller in magnitude than the
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shift computed for a very large domain encompassing 1945 water molecules aimed to mimic

the bulk sII hydrate.35 If we assume that the same relationship holds for the frequency shifts

obtained with the quantum 6D calculations in this study, and for all three isotopologues,

then the theoretical frequency shifts for H2, HD, and D2 in the small cage of sII hydrate are

−43, −37, and −31 cm−1, respectively.

The vibrational frequency shift measured at 76 K for H2 in the small cage of sII hydrate,27

−34 cm−1, is about 21% smaller by magnitude than the (extrapolated) theoretical value of

−43 cm−1, while the shift measured for D2, also at 76 K,27 −25 cm−1, is about 24% smaller

in magnitude than the theoretical result of −31 cm−1. Experimental data regarding the

frequency shift of HD in the sII hydrate are not available. The agreement between theory

and experiment is satisfactory, given that the shifts are computed rigorously and from first-

principles, with no adjustable parameters. The agreement improves if the temperature

dependence of the frequency shift measured for H2 (but not HD and D2 so far) in the small

sII hydrate cage26 is taken into account. As pointed out by Qu and Bowman,41 the frequency

shift measured at 20 K is about −37 cm−1,26 compared to −34 cm−1 at 76 K.27 Since the

quantum 6D results are for 0 K, it is more appropriate to compare our computed value for

H2, −43 cm−1, to the experimental shift at 20 K, −37 cm−1. In that case, the measured

shift is only 14% smaller in magnitude than the theoretical result.

Since the computed fully coupled quantum 6D vibrational frequency shifts are essentially

numerically exact for the PES employed, the residual discrepancies between theory and

experiment can be attributed primarily to the deficiencies in the description of the H2-

hydrate interaction. These can stem from the inaccuracy of the ab initio 6D H2–H2O pair

potential and, more likely, the lack of three-body terms in the H2-hydrate PES. The recent

DMC calculations of Qu and Bowman41 of the vibrational frequency shift of H2 encapsulated

in the (rigid) small cage of the sII hydrate surrounded by additional water molecules did

include both the 2-body H2–H2O and 3-body H2–H2O–H2O interactions. When only the

2-body interactions were considered, the frequency shift of about 26 cm−1 was obtained.

Including the 3-body interactions yielded the shift of −40±4 cm−1, in good agreement with

the measured shift of 37 cm−1 at 20 K.26
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IV. CONCLUSIONS

We performed fully coupled quantum 6D calculations of the vibration-translation-rotation

(VTR) eigenstates of a flexible H2, HD, and D2 molecule inside the small cage of the sII

clathrate hydrate, taken to be rigid. These calculations utilized two different approaches,

the Smolyak scheme approach,52–58 and the Chebyshev variant61 of filter diagonalization,62

together with the direct-product basis described in Ref. 49. It was demonstrated that with

both approaches it is entirely feasible to obtain a highly converged energy of the first excited

(v = 1) intramolecular vibrational state of the caged diatomic molecule, and its frequency

shift relative to the gas-phase value, without excessive computational effort. What made this

possible was the realization that to obtain the converged intramolecular stretch fundamental

of the entrapped H2 at ≈4100 cm−1 it sufficed to have converged only the TR states in the

v = 0 manifold up to at most 400-450 cm−1 above the ground state, necessary for proper

description of the delocalized ground state of the system and the vibrational averaging over

the large-amplitude TR motions. This led to the conclusion that the v = 1 intramolecular

vibrational state is extremely weakly coupled to the highly excited v = 0 TR states.

Quantum 6D calculations of the coupled VRT eigenstates, including the v = 1 state

and its frequency shift relative to the gas-phase value, were performed for H2, HD and D2

encapsulated inside three spherical sII hydrate domains of increasing radius, treated as rigid.

A pairwise-additive 6D intermolecular PES for H2 inside the hydrate domain was employed

in these calculations, constructed using the ab initio-based40 6D H2–H2O pair potential, for

flexible H2 and rigid H2O. In addition, the VRT ground state of H2 in the (rigid) small cage

was determined by means of the 6D DMC simulations, to partly verify the correctness of

the eigenstate-resolved calculations.

All results of the quantum 6D calculations for H2 in the three hydrate domains considered

agree extremely well with those from the quantum 5D, rigid-H2 treatment,35 demonstrating

the high accuracy of the quantum 5D method for computing vibrational frequency shifts

employed in Ref. 35 and earlier applications.36–39

Comparison of the quantum 6D frequency shifts for H2 and D2 with the corresponding

experimental results at 76 K27 shows that the latter are 21% and 24% smaller in magnitude,

respectively. The difference in the magnitudes of the calculated H2 frequency shift and that

measured for H2 at 20 K26 is only 14%. The agreement between theory and experiment is
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satisfactory, but clearly there is room for improvement.

The quantum 6D calculation of the vibrational frequency shift is rigorous and yields

results that are virtually exact numerically for the PES employed. The only remaining dy-

namical approximation is treating the hydrogen-bonded water framework as rigid. However,

the H2-hydrate interaction is weak, and moreover, the disparity between the masses of H2

(and isotopologues) and the confining hydrate is large. As a result, the coupling of VTR

motions of H2 to the vibrations (phonons) of the host water framework is weak as well,

and its neglect (by treating the hydrate as rigid) is not expected to introduce significant

errors in the calculated frequency shifts. Consequently, the main source of the residual dif-

ferences between the computed and experimental values have to be certain shortcomings in

the pairwise-additive intermolecular PES for the H2-hydrate interaction, having to do with

either the ab initio 6D H2–H2O pair potential or the absence of the nonadditive three-body

interactions, or a combination of both. These possibilities will be investigated in the future.

It is likely that very weak coupling between the high-frequency intramolecular modes

and the low-frequency intermolecular vibrations is the feature of other molecular systems,

in particular weakly bound ones, e.g., hydrogen-bonded and van der Waals complexes men-

tioned in the Introduction. In that case, the fundamental excitations of their intramolecular

modes, and frequency shifts, could be calculated accurately from full-dimensional, fully

coupled quantum bound-state calculations, without converging the very large number of

highly-excited intermolecular vibrational eigenstates in the manifold of the intramolecular

ground state. This could be achieved with a relatively small basis for the intermolecular

DOFs capable of accurately describing the vibrational averaging over the large-amplitude in-

termolecular motions in the delocalized ground-state wave function, but not the high-lying

intermolecular eigenstates. One attractive and challenging target for such a treatment is

HF dimer, for which high-quality full-dimensional (6D) PESs are available,44,65–67 as is the

wealth of spectroscopic data about its intra- and intermolecular excitations.
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11Z. Bačić. J. Chem. Phys. 149, 100901 (2018).

12M. Xu; Y. Elmatad; F. Sebastianelli; J. W. Moskowitz; and Z. Bačić. J. Phys. Chem. B
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20F. Sebastianelli; M. Xu; and Z. Bačić. J. Chem. Phys. 129, 244706 (2008).

21A. Witt; F. Sebastianelli; M. E. Tuckerman; and Z. Bačić. J. Phys. Chem. C 114, 20775
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48Z. Homayoon; R. Conte; C. Qu; and J. M. Bowman. J. Chem. Phys. 143, 084302 (2015).
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FIG. 1. 3D isosurface of the H2 c.m. probability distribution inside the small cage of the sII

hydrate, from the 6D DMC simulation.
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TABLE I. Numbers of primitive basis functions nbi and grid points nqi (i = 1, . . . , 4) as a function

of the parameter `i. For the translational (i = 1, . . . , 3) and vibrational (i = 4) degrees of freedom

(DOFs), the number of grid point is equal to the number of primitive functions nbi. For the

rotational dof (i = 5), the number of Lebedev points is fonction of `i and is explictely given and

the quantum rotational number j is such that 0 6 j 6 jmax.

`i 0 1 2 3 4 5 6 7 8

Translation (HO)

nbi 1 3 5 7 9 11 13 15 17

Vibration (HO)

nbi 1 4 7 10 13 16 19 22 25

Rotation (Y m
j )

jmax 0 1 2 3 4 5 6 7 8

nb5 1 4 9 16 25 36 49 64 81

nq5 (Lebedev) 6 6 14 26 38 50 74 86 110
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TABLE II. Ground-state energies E0 (in cm−1) of the H2 isotopologues inside the small cage of

the sII hydrate comprised of 20 water molecules, from the 6D DMC and Smolyak calculations.

Method H2 HD D2

DMC 1441. ± 10. 1127. ± 9. 770. ± 7.

Smolyak 1438.3 ± 0.1 1129.9 ± 0.1 771.2 ± 0.1
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TABLE III. Comparison of the energies (in cm−1) of the fundamental translational excitations and

the rotational j = 0 → 1 transitions of H2 in the ground (v = 0) vibrational state from quantum

6D calculations, in which the Smolyak scheme approach is employed, for three sII clathrate hydrate

domains with the experimental results from Ref. 64 (in boldface). For a domain with N water

molecules, where N = 20 corresponds to the isolated small cage, the calculated excitation energies

are relative to the ground-state energy E0 of this domain from the quantum 6D calculations. Also

shown are the quantum 6D frequencies ν (in cm−1) of the stretching fundamental (v = 1) of H2

in the three sII hydrate domains, and their respective frequency shifts ∆ν. The experimental

frequency shifts (in boldface) at 76 K and 20 K are from Refs. 27 and 26, respectively. The

numbers in the brackets are the corresponding quantum 5D results reported in Ref. 35.

N

Exp. 20 40 76

E0 – 1438.3 1401.7 1382.6

Translations

I 71.0 66.8 (66.78) 66.5 (66.36) 66.2 (66.13)

II 80.2 76.1 (76.02) 75.5 (75.35) 75.3 (75.12)

III 101.1 93.3 (93.13) 92.5 (92.34) 92.2 (92.06)

Rotations

j = 1

I 110.0 85.4 (86.61) 93.5 (94.68) 97.7 (98.95)

II 116.5 121.2 (122.18) 121.1 (122.17) 118.4 (119.40)

III 122.1 147.6 (148.65) 140.2 (141.39) 137.7 (138.85)

ν 4120.9 4119.4 4119.2

∆ν -34 (76 K)/-37 (20 K) -40.2 (-39.81) -41.7 (-41.29) -41.9 (-42.30)
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TABLE IV. Comparison of the energies (in cm−1) of the fundamental translational excitations and

the rotational j = 0→ 1 transitions of H2, HD, and D2 in the ground (v = 0) vibrational state from

quantum 6D calculations, in which the Smolyak scheme approach is employed, for the sII hydrate

domain having 76 water molecules with the experimental results from Ref. 64 (in boldface). Also

shown are the quantum 6D frequencies ν (in cm−1) of the stretching fundamentals (v = 1) of

H2, HD, and D2 in the same sII hydrate domain, and their respective frequency shifts ∆ν. The

experimental frequency shifts (in boldface) for H2 and D2 at 76 K are from Ref. 27, while the shift

for H2 at 20 K is from Ref. 26.

H2 HD D2

Exp. Theory Exp. Theory Theory

Translations

I 71.0 66.2 53.2 48.9 39.8

II 80.2 75.3 58.7 54.7 46.4

III 101.1 92.2 70.6 79.5 60.3

Rotations

j = 1

I 110.0 97.7 87.6 62.6 40.6

II 116.5 118.4 93.4 91.4 61.9

III 122.1 137.7 98.5 106.9 77.7

ν 4119.2 3595.5 2962.9

νfree 4161.1 3631.8 2993.2

∆ν -34 (76 K)/-37 (20 K) -41.9 -36.3 -25 (76 K) -30.3
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