437 research outputs found

    Photon emission in a constant magnetic field in 2+1 dimensional space-time

    Full text link
    We calculate by the proper-time method the amplitude of the two-photon emission by a charged fermion in a constant magnetic field in (2+1)-dimensional space-time. The relevant dynamics reduces to that of a supesymmetric quantum-mechanical system with one bosonic and one fermionic degrees of freedom.Comment: 18 pages. v2: references added, some significant changes in the introductio

    Solving advection equations by applying the crank-nicolson scheme combined with the richardson extrapolation

    Get PDF
    Advection equations appear often in large-scale mathematical models arising in many fields of science and engineering. The Crank-Nicolson scheme can successfully be used in the numerical treatment of such equations. The accuracy of the numerical solution can sometimes be increased substantially by applying the Richardson Extrapolation. Two theorems related to the accuracy of the calculations will be formulated and proved in this paper. The usefulness of the combination consisting of the Crank-Nicolson scheme and the Richardson Extrapolation will be illustrated by numerical examples. Copyright Zahari Zlatev et al

    Application of Richardson extrapolation for multi-dimensional advection equations

    Get PDF
    A Crank-Nicolson type scheme, which is of order two with respect to all independent variables, is used in the numerical solution of multi-dimensional advection equations. Normally, the order of accuracy of any numerical scheme can be increased by one when the well-known Richardson Extrapolation is used. It is proved that in this particular case the order of accuracy of the combined numerical method, the method consisting of the Crank-Nicolson scheme and the Richardson Extrapolation, is not three but four. (C) 2014 Elsevier Ltd. All rights reserved

    A New Cosmological Model of Quintessence and Dark Matter

    Full text link
    We propose a new class of quintessence models in which late times oscillations of a scalar field give rise to an effective equation of state which can be negative and hence drive the observed acceleration of the universe. Our ansatz provides a unified picture of quintessence and a new form of dark matter we call "Frustrated Cold Dark Matter" (FCDM). FCDM inhibits gravitational clustering on small scales and could provide a natural resolution to the core density problem for disc galaxy halos. Since the quintessence field rolls towards a small value, constraints on slow-roll quintessence models are safely circumvented in our model.Comment: Revised. Important new results added in response to referees comment

    Natural Quintessence with Gauge Coupling Unification

    Full text link
    We show that a positive accelerating universe can be obtained simply by the dynamics of a non-abelian gauge group. It is the condensates of the chiral fields that obtain a negative power potential, below the condensation scale, and allow for a quintessence interpretation of these fields. The only free parameters in this model are NcN_c and NfN_f and the number of dynamically gauge singlet bilinear fields ϕ\phi generated below the condensation scale. We show that it is possible to have unification of all coupling constants, including the standard and non standard model couplings, while having an acceptable phenomenology of ϕ\phi as the cosmological constant. This is done without any fine tuning of the initial conditions. The problem of coincidence (why the universe has only recently started an accelerating period) is not solved but it is put at the same level as what the particle content of the standard model is.Comment: minor changes(discussion on field normalization included), reference added, accepted in Phy.Rev.Lett., 5 pages,LateX,2 Figure

    Gravitational field of vacuumless defects

    Full text link
    It has been recently shown that topological defects can arise in symmetry breaking models where the scalar field potential V(ϕ)V(\phi) has no minima and is a monotonically decreasing function of ϕ|\phi|. Here we study the gravitational fields produced by such vacuumless defects in the cases of both global and gauge symmetry breaking. We find that a global monopole has a strongly repulsive gravitational field, and its spacetime has an event horizon similar to that in de Sitter space. A gauge monopole spacetime is essentially that of a magnetically charged black hole. The gravitational field of a global string is repulsive and that of a gauge string is attractive at small distances and repulsive at large distances. Both gauge and global string spacetimes have singularities at a finite distance from the string core.Comment: 19 pages, REVTeX, 6 Postscript figure

    Cosmological models from quintessence

    Get PDF
    A generalized quintessence model is presented which corresponds to a richer vacuum structure that, besides a time-dependent, slowly varying scalar field, contains a varying cosmological term. From first principles we determine a number of scalar-field potentials that satisfy the constraints imposed by the field equations and conservations laws, both in the conventional and generalized quintessence models. Besides inverse-power law solutions, these potentials are given in terms of hyperbolic functions or the twelve Jacobian elliptic functions, and are all related to the luminosity distance by means of an integral equation. Integration of this equation for the different solutions leads to a large family of cosmological models characterized by luminosity distance-redshift relations. Out of such models, only four appear to be able to predict a required accelerating universe conforming to observations on supernova Ia, at large or moderate redshifts.Comment: 9 pages, RevTex, to appear in Phys. Rev.
    corecore