58 research outputs found

    Humoral Immune Response to Keyhole Limpet Haemocyanin, the Protein Carrier in Cancer Vaccines

    Get PDF
    Keyhole limpet haemocyanin (KLH) appears to be a promising protein carrier for tumor antigens in numerous cancer vaccine candidates. The humoral immune response to KLH was characterized at the single-cell level with ELISPOT combined with separations of cell populations according to their expression of homing receptors (HRs). The analysis of HR expressions is expected to reveal the targeting of the immune response in the body. Eight orally primed and four nonprimed volunteers received KLH-vaccine subcutaneously. Circulating KLH-specific plasmablasts were found in all volunteers, 60 KLH-specific plasmablasts/106 PBMC in the nonprimed and 136/106 in the primed group. The proportion of L-selectin+ plasmablasts proved high and integrin α4β7+ low. KLH serving as protein carrier in several vaccines, the homing profile of KLH-specific response may be applicable to the cancer antigen parts in the same vaccines. The present data reflect a systemic homing profile, which appears advantageous for the targeting of immune response to cancer vaccines

    Humoral Immune Response to Keyhole Limpet Haemocyanin, the Protein Carrier in Cancer Vaccines

    Get PDF
    Keyhole limpet haemocyanin (KLH) appears to be a promising protein carrier for tumor antigens in numerous cancer vaccine candidates. The humoral immune response to KLH was characterized at the single-cell level with ELISPOT combined with separations of cell populations according to their expression of homing receptors (HRs). The analysis of HR expressions is expected to reveal the targeting of the immune response in the body. Eight orally primed and four nonprimed volunteers received KLHvaccine subcutaneously. Circulating KLH-specific plasmablasts were found in all volunteers, 60 KLH-specific plasmablasts/10 6 PBMC in the nonprimed and 136/10 6 in the primed group. The proportion of L-selectin + plasmablasts proved high and integrin α 4 β 7 + low. KLH serving as protein carrier in several vaccines, the homing profile of KLH-specific response may be applicable to the cancer antigen parts in the same vaccines. The present data reflect a systemic homing profile, which appears advantageous for the targeting of immune response to cancer vaccines

    Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for “Holes” in the T Cell Repertoire

    Get PDF
    Background: Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands. Principal Findings: First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self-antigens. Conclusions: T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cel

    Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes

    Get PDF
    Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. © 2013 Nascimento et al

    Dengue 1 Diversity and Microevolution, French Polynesia 2001–2006: Connection with Epidemiology and Clinics

    Get PDF
    The molecular characterization of 181 serotype 1 Dengue fever (DENV-1) viruses collected regularly during the 2001–2006 period in French Polynesia (FP) from patients experiencing various clinical presentations revealed that the virus responsible for the severe 2001 outbreak was introduced from South-East Asia, and evolved under an endemic mode until a new epidemic five years later. The dynamics of DENV-1 epidemics in FP did not follow the model of repeated virus introductions described in other South Pacific islands. They were characterized by a long sustained viral circulation and the absence of new viral introduction over a six-year period. Viral genetic variability was not observed only during outbreaks. In contrast with conventional thinking, a significant part of DENV-1 evolution may occur during endemic periods, and may reflect adaptation to the mosquito vector. However, DENV-1 evolution was globally characterized by strong purifying selection pressures leading to genome conservation, like other DENV serotypes and other arboviruses subject to constraints imposed by the host-vector alternating replication of viruses. Severe cases—dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS)—may be linked to both viral and host factors. For the first time, we report a significant correlation between intra-host viral genetic variability and clinical outcome. Severe cases were characterized by more homogeneous viral populations with lower intra-host genetic variability

    High Pro-Inflammatory Cytokine Secretion and Loss of High Avidity Cross-Reactive Cytotoxic T-Cells during the Course of Secondary Dengue Virus Infection

    Get PDF
    BACKGROUND: Dengue is one of the most important human diseases transmitted by an arthropod vector and the incidence of dengue virus infection has been increasing - over half the world's population now live in areas at risk of infection. Most infections are asymptomatic, but a subset of patients experience a potentially fatal shock syndrome characterised by plasma leakage. Severe forms of dengue are epidemiologically associated with repeated infection by more than one of the four dengue virus serotypes. Generally attributed to the phenomenon of antibody-dependent enhancement, recent observations indicate that T-cells may also influence disease phenotype. METHODS AND FINDINGS: Virus-specific cytotoxic T lymphocytes (CTL) showing high level cross reactivity between dengue serotypes could be expanded from blood samples taken during the acute phase of secondary dengue infection. These could not be detected in convalescence when only CTL populations demonstrating significant serotype specificity were identified. Dengue cross-reactive CTL clones derived from these patients were of higher avidity than serotype-specific clones and produced much higher levels of both type 1 and certain type 2 cytokines, many previously implicated in dengue pathogenesis. CONCLUSION: Dengue serotype cross-reactive CTL clones showing high avidity for antigen produce higher levels of inflammatory cytokines than serotype-specific clones. That such cells cannot be expanded from convalescent samples suggests that they may be depleted, perhaps as a consequence of activation-induced cell death. Such high avidity cross-reactive memory CTL may produce inflammatory cytokines during the course of secondary infection, contributing to the pathogenesis of vascular leak. These cells appear to be subsequently deleted leaving a more serotype-specific memory CTL pool. Further studies are needed to relate these cellular observations to disease phenotype in a large group of patients. If confirmed they have significant implications for understanding the role of virus-specific CTL in pathogenesis of dengue disease

    Prion Protein Modulates Cellular Iron Uptake: A Novel Function with Implications for Prion Disease Pathogenesis

    Get PDF
    Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders

    Multicenter evaluation of the clinical utility of laparoscopy-assisted ERCP in patients with Roux-en-Y gastric bypass

    Get PDF
    Background and Aims The obesity epidemic has led to increased use of Roux-en-Y gastric bypass (RYGB). These patients have an increased incidence of pancreaticobiliary diseases yet standard ERCP is not possible due to surgically altered gastroduodenal anatomy. Laparoscopic-ERCP (LA-ERCP) has been proposed as an option but supporting data are derived from single center small case-series. Therefore, we conducted a large multicenter study to evaluate the feasibility, safety, and outcomes of LA-ERCP. Methods This is retrospective cohort study of adult patients with RYGB who underwent LA-ERCP in 34 centers. Data on demographics, indications, procedure success, and adverse events were collected. Procedure success was defined when all of the following were achieved: reaching the papilla, cannulating the desired duct and providing endoscopic therapy as clinically indicated. Results A total of 579 patients (median age 51, 84% women) were included. Indication for LA-ERCP was biliary in 89%, pancreatic in 8%, and both in 3%. Procedure success was achieved in 98%. Median total procedure time was 152 minutes (IQR 109-210) with median ERCP time 40 minutes (IQR 28-56). Median hospital stay was 2 days (IQR 1-3). Adverse events were 18% (laparoscopy-related 10%, ERCP-related 7%, both 1%) with the clear majority (92%) classified as mild/moderate whereas 8% were severe and 1 death occurred. Conclusion Our large multicenter study indicates that LA-ERCP in patients with RYGB is feasible with a high procedure success rate comparable with that of standard ERCP in patients with normal anatomy. ERCP-related adverse events rate is comparable with conventional ERCP, but the overall adverse event rate was higher due to the added laparoscopy-related events
    corecore