26 research outputs found

    Molecular detection of Leishmania infantum, filariae and Wolbachia spp. in dogs from southern Portugal

    Get PDF
    Background: Leishmaniosis caused by the protozoan Leishmania infantum and dirofilariosis caused by the nematodes Dirofilaria immitis or Dirofilaria repens are vector-borne zoonoses widely present in the Mediterranean basin. In addition, some studies reported that the endosymbiont Wolbachia spp. play a role in the biology and pathogenesis of filarial parasites. The aim of this work was to evaluate the frequency of mono-and co-infections by L. infantum, filariae and Wolbachia spp. and their association with clinical signs in dogs from the south of Portugal. Leishmanial, filarial and Wolbachia spp. DNA were evaluated by specific real-time polymerase chain reaction (qPCR) assays in blood samples from 230 dogs.Findings: One hundred and thirty-nine (60.4 %) dogs were qPCR-positive for L. infantum and 26 (11.3 %) for filariae (24 for D. immitis only, one D. immitis and for Acanthocheilonema dracunculoides and another one for Acanthocheilonema reconditum only). Wolbachia spp. DNA was amplified from 16 (64.0 %) out of the 25 D. immitis-positive dogs. Nineteen (8.3 %) dogs were co-infected with L. infantum and D. immitis, including the one (0.4 %) A. drancunculoides-positive animal. In dogs without clinical signs consistent with leishmaniosis and/or dirofilariosis, L. infantum prevalence was 69 %, whereas in those dogs with at least one clinical manifestation compatible with any of the two parasitoses prevalence was 42.7 %. Leishmania prevalence was significantly higher in apparently healthy mongrels (77.2 %) and pets (76.9 %) than in defined-breed dogs (including crosses; 58.8 %) and in dogs with an aptitude other than pet (i.e. farm, guard, hunting, shepherd or stray), respectively, whereas in those dogs with at least one clinical sign, the detection of L. infantum DNA was higher in males (53.3 %) and in those dogs not receiving insect repellents (52.8 %).Conclusions: The molecular detection of canine vector-borne disease (CVBD) agents, some of which are zoonotic, reinforces the need to implement efficient prophylactic measures, such as insect repellents and macrocyclic lactones (including compliance to administration), in the geographical areas where these agents are distributed, with the view to prevent infection and disease among mammalian hosts including humans

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    Three-Year Growth Hormone Treatment in Short Children with X-Linked Hypophosphatemic Rickets: Effects on Linear Growth and Body Disproportion

    No full text
    Context: Children with X-linked hypophosphatemic rickets (XLH) are prone to progressive disproportionate stunting despite oral phosphate and vitamin D treatment. Objective: Our objective was to analyze the effects of GH treatment on stature and lengths of linear body segments in short children with XLH. Design, Settings, and Patients: A 3-yr randomized controlled open-label GH study in short prepubertal children with XLH(n = 16) on phosphate and calcitriol treatment was conducted. A cohort of XLH patients (n = 76) on conservative treatment served as an XLH reference population. Main Outcome Measures: Changes in SD scores (SDS) of stature and linear body segments, i.e. sitting height, leg and arm length, and sitting height index (i.e. ratio between sitting height and stature) were the main outcome measures. Results: XLH patients presented at time of enrollment with significant impairments of stature (-3.3 SDS) and linear body segments compared with healthy children. Leg length (-3.8 SDS) was most impaired, whereas sitting height (-1.7 SDS) was best preserved. The markedly elevated mean sitting height index (+3.3 SDS) reflected severe body disproportion. GH resulted in a sustained increase in linear growth (stature, +1.1 SDS; sitting height, +1.3 SDS; leg length, +0.8 SDS; arm length, +1.1 SDS; each P < 0.05 vs. baseline), whereas no significant changes were observed in controls. Mean height SDS at 3 yr did not significantly differ between groups. Sitting height index remained stable in both the GH-treated patients and in study controls but increased further in the XLH-reference population. Conclusions: The 3-yr GH treatment improved linear growth without progression of body disproportion in short children with XLH. (J Clin Endocrinol Metab 96: E2097-E2105, 2011
    corecore