13 research outputs found

    Pathways to justice, equity, diversity, and inclusion in marine science and conservation

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johri, S., Carnevale, M., Porter, L., Zivian, A., Kourantidou, M., Meyer, E. L., Seevers, J., & Skubel, R. A. Pathways to justice, equity, diversity, and inclusion in marine science and conservation. Frontiers in Marine Science, 8, (2021): 696180, https://doi.org/10.3389/fmars.2021.696180.Marine conservation sciences have traditionally been, and remain, non-diverse work environments with many barriers to justice, equity, diversity, and inclusion (JEDI). These barriers disproportionately affect entry of early career scientists and practitioners and limit the success of marine conservation professionals from under-represented, marginalized, and overburdened groups. These groups specifically include women, LGBTQ+, Black, Indigenous, and people of color (BIPOC). However, the issues also arise from the global North/South and East/West divide with under-representation of scientists from the South and East in the global marine conservation and science arena. Persisting inequities in conservation, along with a lack of inclusiveness and diversity, also limit opportunities for innovation, cross-cultural knowledge exchange, and effective implementation of conservation and management policies. As part of its mandate to increase diversity and promote inclusion of underrepresented groups, the Diversity and Inclusion committee of the Society for Conservation Biology-Marine Section (SCB Marine) organized a JEDI focus group at the Sixth International Marine Conservation Congress (IMCC6) which was held virtually. The focus group included a portion of the global cohort of IMCC6 attendees who identified issues affecting JEDI in marine conservation and explored pathways to address those issues. Therefore, the barriers and pathways identified here focus on issues pertinent to participants’ global regions and experiences. Several barriers to just, equitable, diverse, and inclusive conservation science and practice were identified. Examples included limited participation of under-represented minorities (URM) in research networks, editorial biases against URM, limited professional development and engagement opportunities for URM and non-English speakers, barriers to inclusion of women, LGBTQ+, and sensory impaired individuals, and financial barriers to inclusion of URM in all aspects of marine conservation and research. In the current policy brief, we explore these barriers, assess how they limit progress in marine conservation research and practice, and seek to identify initiatives for improvements. We expect the initiatives discussed here to advances practices rooted in principles of JEDI, within SCB Marine and, the broader conservation community. The recommendations and perspectives herein broadly apply to conservation science and practice, and are critical to effective and sustainable conservation and management outcomes.The Society for Conservation – Marine Section provided partial funding to support publication costs of this manuscript

    The Aichi Biodiversity Targets: achievements for marine conservation and priorities beyond 2020

    Get PDF
    In 2010 the Conference of the Parties (COP) for the Convention on Biological Diversity revised and updated a Strategic Plan for Biodiversity 2011–2020, which included the Aichi Biodiversity Targets. Here a group of early career researchers mentored by senior scientists, convened as part of the 4th World Conference on Marine Biodiversity, reflects on the accomplishments and shortfalls under four of the Aichi Targets considered highly relevant to marine conservation: target 6 (sustainable fisheries), 11 (protection measures), 15 (ecosystem restoration and resilience) and 19 (knowledge, science and technology). We conclude that although progress has been made towards the targets, these have not been fully achieved for the marine environment by the 2020 deadline. The progress made, however, lays the foundations for further work beyond 2020 to work towards the 2050 Vision for Biodiversity. We identify key priorities that must be addressed to better enable marine biodiversity conservation efforts moving forward

    Synergistic interactions among growing stressors increase risk to an Arctic ecosystem

    No full text
    Oceans provide critical ecosystem services, but are subject to a growing number of external pressures, including overfishing, pollution, habitat destruction, and climate change. Current models typically treat stressors on species and ecosystems independently, though in reality, stressors often interact in ways that are not well understood. Here, we use a network interaction model (OSIRIS) to explicitly study stressor interactions in the Chukchi Sea (Arctic Ocean) due to its extensive climate-driven loss of sea ice and accelerated growth of other stressors, including shipping and oil exploration. The model includes numerous trophic levels ranging from phytoplankton to polar bears. We find that climate-related stressors have a larger impact on animal populations than do acute stressors like increased shipping and subsistence harvesting. In particular, organisms with a strong temperature-growth rate relationship show the greatest changes in biomass as interaction strength increased, but also exhibit the greatest variability. Neglecting interactions between stressors vastly underestimates the risk of population crashes. Our results indicate that models must account for stressor interactions to enable responsible management and decision-making

    Establishing the Foundation for the Global Observing System for Marine Life

    No full text
    Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources
    corecore