10 research outputs found

    Controlling the charge density wave transition in single-layer TiTe2xSe2(1−x) alloys by band gap engineering

    Get PDF
    Funding: We gratefully acknowledge support from the Leverhulme Trust via Grant No. RL-2016-006 and the UK Royal Society. The MBE growth facility was funded through an EPSRC strategic equipment grant: EP/M023958/1.Closing the band gap of a semiconductor, into a semimetallic state, gives a powerful potential route to tune the electronic energy gains that drive collective phases like charge density waves (CDW) and excitonic insulator states. We explore this approach for the controversial CDW material monolayer (ML) TiSe2 by engineering its narrow band gap to the semimetallic limit of ML-TiTe2. Using molecular beam epitaxy, we demonstrate the growth of ML-TiTe2xSe2(1−x) alloys across the entire compositional range, and unveil how the (2 × 2) CDW instability evolves through the normal state semiconductor-semimetal transition via in situ angle-resolved photoemission spectroscopy. Through model electronic structure calculations, we identify how this tunes the relative strength of excitonic and Peierls-like coupling, demonstrating band gap engineering as a powerful method for controlling the microscopic mechanisms underpinning the formation of collective states in two-dimensional materials.Publisher PDFPeer reviewe

    Hierarchy of Lifshitz transitions in the surface electronic structure of Sr2RuO4 under uniaxial compression

    Get PDF
    Funding: We gratefully acknowledge support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 and EP/R031924/1), the European Research Council (through the QUESTDO project, 714193), and the Leverhulme Trust (Grant No. RL-2016-006). E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. N.K. is supported by a KAKENHI Grants-in-Aids for Scientific Research (Grant Nos.18K04715, and 21H01033), and Core-to-Core Program (No. JPJSCCA20170002) from the Japan Society for the Promotion of Science (JSPS) and by a JST-Mirai Program (Grant No. JPMJMI18A3). APM and CWH acknowledge support from the Deutsche Forschungsgemeinschaft - TRR 435 288 - 422213477 (project A10). We thank Diamond Light Source for access to Beamline I05 (Proposals SI27471 and SI28412), which contributed to the results presented here.We report the evolution of the electronic structure at the surface of the layered perovskiteSr2RuO4 under large in-plane uniaxial compression, leading to anisotropic B1g strains of εxx − εyy = −0.9 ± 0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr2RuO4 hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr2RuO4 surface.PostprintPeer reviewe

    Giant valley-Zeeman coupling in the surface layer of an intercalated transition metal dichalcogenide

    Get PDF
    Funding: We gratefully acknowledge support from the Leverhulme Trust (Grant No. RL-2016-006 [P.D.C.K., B.E., T.A., A.R., C.B.]), the European Research Council (through the QUESTDO project, 714193 [P.D.C.K., G.R.S.]), the Engineering and Physical Sciences Research Council (Grant Nos. EP/T02108X/1 [P.D.C.K., P.A.E.M.] and EP/N032128/1 [D.A.M., G.B.]), and the Center for Computational Materials Science at the Institute for Materials Research for allocations on the MASAMUNE-IMR supercomputer system (Project No. 202112-SCKXX-0510 [R.B.V., M.S.B.]). S.B., E.A.M. and A.Z. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V1/3NbS2 using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS2 layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.PostprintPeer reviewe

    Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2

    Get PDF
    Funding: We gratefully acknowledge support from the European Research Council (through the QUESTDO project, 714193), the Engineering and Physical Sciences Research Council (Grant No. EP/T02108X/1), and the Leverhulme Trust (Grant No. RL-2016-006). S.-J.K., E.A.M., A.Z., and I.M. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.Publisher PDFPeer reviewe
    corecore