18 research outputs found

    dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells

    Full text link
    Genetic analyses in Drosophila epithelia have suggested that the phenomenon of “cell competition” could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki). Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells

    dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells

    Get PDF
    Genetic analyses in Drosophila epithelia have suggested that the phenomenon of “cell competition” could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki). Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells

    The lethal giant larvae tumour suppressor mutation requires dMyc oncoprotein to promote clonal malignancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. Precancerous cells are often removed by cell death from normal tissues in the early steps of the tumourigenic process, but the molecules responsible for such a fundamental safeguard process remain in part elusive. With the aim to investigate the molecular crosstalk occurring between precancerous and normal cells <it>in vivo</it>, we took advantage of the clonal analysis methods that are available in <it>Drosophila </it>for studying the phenotypes due to <it>lethal giant larvae </it>(<it>lgl</it>) neoplastic mutation induced in different backgrounds and tissues.</p> <p>Results</p> <p>We observed that <it>lgl </it>mutant cells growing in wild-type imaginal wing discs show poor viability and are eliminated by Jun N-terminal Kinase (JNK)-dependent cell death. Furthermore, they express very low levels of dMyc oncoprotein compared with those found in the surrounding normal tissue. Evidence that this is a cause of <it>lgl </it>mutant cells elimination was obtained by increasing dMyc levels in <it>lgl </it>mutant clones: their overgrowth potential was indeed re-established, with mutant cells overwhelming the neighbouring tissue and forming tumourous masses displaying several cancer hallmarks. Moreover, when <it>lgl </it>mutant clones were induced in backgrounds of slow-dividing cells, they upregulated dMyc, lost apical-basal cell polarity and were able to overgrow. Those phenotypes were abolished by reducing dMyc levels in the mutant clones, thereby confirming its key role in <it>lgl</it>-induced tumourigenesis. Furthermore, we show that the <it>eiger</it>-dependent Intrinsic Tumour Suppressor pathway plays only a minor role in eliminating <it>lgl </it>mutant cells in the wing pouch; <it>lgl</it><sup>-/- </sup>clonal death in this region is instead driven mainly by dMyc-induced Cell Competition.</p> <p>Conclusions</p> <p>Our results provide the first evidence that dMyc oncoprotein is required in <it>lgl </it>tumour suppressor mutant tissue to promote invasive overgrowth in larval and adult epithelial tissues. Moreover, we show that dMyc abundance inside <it>versus </it>outside the mutant clones plays a key role in driving neoplastic overgrowth.</p

    Synergistic combination of multifunctional agents for cosmetic preservation

    No full text
    The preservation of cosmetic products has always been of special interest to the industry; microbial spoilage can lead to product degradation, and in the case of present pathogens, could contribute to a threat to the health of the consumer. In recent years the safety of many traditional preservatives has been questioned by the media and various organisations. Therefore, the cosmetics industry is looking for effective, safe, eco-friendly and sustainable, globally accepted and non-controversial solutions. Due to the current market demand, increasing efforts have been directed towards the research of ‘greener’ and milder ingredients, with favourable toxicological profiles also in the aim to reduce the irritation potential and the risk of sensitisation. To date the research is focused to the investigation of multifunctional antimicrobial agents, enabling the reduction of the number of ingredients and thus toxicological and environmental impact. In the present work, a synergistic mixture of caprylyl glycol and phenethyl alcohol, also endowed with skin emollient and fragrance properties has been investigated. This alternative preservative was found to have excellent antimicrobial activity in different cosmetic formulations whose efficacy is further increased by the addition of chelating agents

    Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review

    No full text
    Besides the unquestionable positive effects of solar exposure for human health, UV rays have been widely investigated for toxicology aspects related to excessive UVB and UVA doses, which involve sunburns, skin aging, DNA skin damage and tumorigenesis. At present, synthetic and mineral sunscreens are used to protect against these damages but several natural molecules can provide UV protection, including also synergic effect or enhanced photo stability. Although a large number of herbal extracts and plant origin molecules can deserve potential applications, most of the study reported utilizes different method and different strategies of investigation, making thus difficult to understand the real versus claimed potential. This is possibly one of the reasons why, beside the large body of literature there are no officially approved natural commercial sun-filter but a consistent number of commercially available solar products (sunscreen) on the market that contain herbal derivatives. In this review we have evaluated the papers appeared in the last 15 years and we have critically collected the most significant data. Several databases, namely Scifinder, Pubmed, Google Scholar, ISI-Web of Science and Scopus, were used as literature sources; excluding patents and symposium or congress papers. Only articles in the English language have been selected. New formulation, new skin delivery systems, skin penetration enhancers and boosters are most likely the next frontier of investigation in order to better understand the role of whole herbal extracts in exerting their photo protective activity

    The in vitro sun protection factor (SPF) is not descriptive of the real performance of solar products

    No full text
    The solar products belong to the category of cosmetics and for their regulation we refer to the EC 1223/2009 of the European Parliament and to the Recommendation EC 2006/647 on the efficacy and claims of sunscreen products. Based on these rules is the need to validate the photoprotection separately in the range of UVA and UVB, with in vitro and in vivo methods, with preference for the latter. For the UVA range (320 nm - 400 nm) in vivo tests have been replaced completely by those in vitro, in view of the good correlation found, harmonized and standardized in the ISO 24443: 2012. For the UVB range (290 nm - 320 nm) the use of the method in vivo is still a need, standardized by Standard ISO 24444: 2010, due to problems related to lack of correlation between the in vitro and in vivo data. The Sun Protection Factor is still largely used and sometimes “abused”, as the unique indicator for the efficacy of a solar product and more recently also for antiage and make-up. However a number of studies appeared in the last decade largely demonstrate that, beside its numeric value, several other properties and factors must be considered in giving useful indication to the customers in the selection of the right product

    Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements

    No full text
    Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements was conducted in intact skin of human volunteers. The results demonstrated a direct correlation between antioxidants treatment and skin antioxidatio

    Synthesis and characterization of new multifunctional self-boosted filters for UV protection: ZnO complex with dihydroxyphenyl benzimidazole carboxylic acid

    Get PDF
    The incidence of skin cancer is increasing both because of climate change and the increase in pollution than people’s incorrect habits of sun exposure. In these regards, sunscreen and photoprotection are essential tools in consenting the benefits induced by safe solar light exposition and skin cancer prevention. In this work, a new class of sunscreen filter was synthesized by chemical combination of a physical filter (ZnO) and Oxisol (dihydroxyphenyl benzimidazole carboxylic acid), an antioxidant molecule with booster effect. In this work, a new class of filters with new properties was achieved by direct functionalization of particles surface. A full characterization of this multifunctional ingredient (ZnO–Ox) was conducted: Compared with the simple mixture, the new filter acts as a multifunctional molecule showing a higher Sun Protection Factor (SPF), a better cytotoxic profile (MTT and NRU assay), and anti-acne activity. A strong reduction of photocatalytic activity of ZnO was observed, also improving the safety profile
    corecore