6,254 research outputs found

    Gerbes and Heisenberg's Uncertainty Principle

    Full text link
    We prove that a gerbe with a connection can be defined on classical phase space, taking the U(1)-valued phase of certain Feynman path integrals as Cech 2-cocycles. A quantisation condition on the corresponding 3-form field strength is proved to be equivalent to Heisenberg's uncertainty principle.Comment: 12 pages, 1 figure available upon reques

    Path-Integral for Quantum Tunneling

    Full text link
    Path-integral for theories with degenerate vacua is investigated. The origin of the non Borel-summability of the perturbation theory is studied. A new prescription to deal with small coupling is proposed. It leads to a series, which at low orders and small coupling differs from the ordinary perturbative series by nonperturbative amount, but is Borel-summable.Comment: 25 pages + 12 figures (not included, but available upon request) [No changed in content in this version. Problem with line length fixed.

    The transition temperature of the dilute interacting Bose gas for NN internal degrees of freedom

    Full text link
    We calculate explicitly the variation δTc\delta T_c of the Bose-Einstein condensation temperature TcT_c induced by weak repulsive two-body interactions to leading order in the interaction strength. As shown earlier by general arguments, δTc/Tc\delta T_c/T_c is linear in the dimensionless product an1/3an^{1/3} to leading order, where nn is the density and aa the scattering length. This result is non-perturbative, and a direct perturbative calculation of the amplitude is impossible due to infrared divergences familiar from the study of the superfluid helium lambda transition. Therefore we introduce here another standard expansion scheme, generalizing the initial model which depends on one complex field to one depending on NN real fields, and calculating the temperature shift at leading order for large NN. The result is explicit and finite. The reliability of the result depends on the relevance of the large NN expansion to the situation N=2, which can in principle be checked by systematic higher order calculations. The large NN result agrees remarkably well with recent numerical simulations.Comment: 10 pages, Revtex, submitted to Europhysics Letter

    Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures

    Full text link
    We prove two identities of Hall-Littlewood polynomials, which appeared recently in a paper by two of the authors. We also conjecture, and in some cases prove, new identities which relate infinite sums of symmetric polynomials and partition functions associated with symmetry classes of alternating sign matrices. These identities generalize those already found in our earlier paper, via the introduction of additional parameters. The left hand side of each of our identities is a simple refinement of a relevant Cauchy or Littlewood identity. The right hand side of each identity is (one of the two factors present in) the partition function of the six-vertex model on a relevant domain.Comment: 34 pages, 14 figure

    A Weyl-covariant tensor calculus

    Full text link
    On a (pseudo-) Riemannian manifold of dimension n > 2, the space of tensors which transform covariantly under Weyl rescalings of the metric is built. This construction is related to a Weyl-covariant operator D whose commutator [D,D] gives the conformally invariant Weyl tensor plus the Cotton tensor. So-called generalized connections and their transformation laws under diffeomorphisms and Weyl rescalings are also derived. These results are obtained by application of BRST techniques.Comment: LaTeX, 10 pages. Minor corrections and a reference adde

    The prediction of nonlinear longitudinal combustion instability in liquid propellant rockets

    Get PDF
    An analytical technique was developed to solve nonlinear longitudinal combustion instability problems. The analysis yields the transient and limit cycle behavior of unstable motors and the threshold amplitude required to trigger a linearly stable motor into unstable operation. The limit cycle waveforms were found to exhibit shock wave characteristics for most unstable engine operating conditions. A method of correlating the analytical solutions with experimental data was developed. Calculated results indicate that a second-order solution adequately describes the behavior of combustion instability oscillations over a broad range of engine operating conditions, but that higher order effects must be accounted for in order to investigate engine triggering

    Discrete holomorphicity and quantized affine algebras

    Full text link
    We consider non-local currents in the context of quantized affine algebras, following the construction introduced by Bernard and Felder. In the case of Uq(A1(1))U_q(A_1^{(1)}) and Uq(A2(2))U_q(A_2^{(2)}), these currents can be identified with configurations in the six-vertex and Izergin--Korepin nineteen-vertex models. Mapping these to their corresponding Temperley--Lieb loop models, we directly identify non-local currents with discretely holomorphic loop observables. In particular, we show that the bulk discrete holomorphicity relation and its recently derived boundary analogue are equivalent to conservation laws for non-local currents

    The two-point correlation function of three-dimensional O(N) models: critical limit and anisotropy

    Full text link
    In three-dimensional O(N) models, we investigate the low-momentum behavior of the two-point Green's function G(x) in the critical region of the symmetric phase. We consider physical systems whose criticality is characterized by a rotational-invariant fixed point. Several approaches are exploited, such as strong-coupling expansion of lattice non-linear O(N) sigma models, 1/N-expansion, field-theoretical methods within the phi^4 continuum formulation. In non-rotational invariant physical systems with O(N)-invariant interactions, the vanishing of space-anisotropy approaching the rotational-invariant fixed point is described by a critical exponent rho, which is universal and is related to the leading irrelevant operator breaking rotational invariance. At N=\infty one finds rho=2. We show that, for all values of N0N\geq 0, ρ2\rho\simeq 2. Non-Gaussian corrections to the universal low-momentum behavior of G(x) are evaluated, and found to be very small.Comment: 65 pages, revte

    Branching rate expansion around annihilating random walks

    Full text link
    We present some exact results for branching and annihilating random walks. We compute the nonuniversal threshold value of the annihilation rate for having a phase transition in the simplest reaction-diffusion system belonging to the directed percolation universality class. Also, we show that the accepted scenario for the appearance of a phase transition in the parity conserving universality class must be improved. In order to obtain these results we perform an expansion in the branching rate around pure annihilation, a theory without branching. This expansion is possible because we manage to solve pure annihilation exactly in any dimension.Comment: 5 pages, 5 figure

    On the sign of kurtosis near the QCD critical point

    Full text link
    We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is universally negative when the critical point is approached on the crossover side of the phase separation line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity, may become smaller than the value given by independent Poisson statistics. We discuss implications for the Beam Energy Scan program at RHIC.Comment: 4 pages, 2 figure
    corecore