research

The prediction of nonlinear longitudinal combustion instability in liquid propellant rockets

Abstract

An analytical technique was developed to solve nonlinear longitudinal combustion instability problems. The analysis yields the transient and limit cycle behavior of unstable motors and the threshold amplitude required to trigger a linearly stable motor into unstable operation. The limit cycle waveforms were found to exhibit shock wave characteristics for most unstable engine operating conditions. A method of correlating the analytical solutions with experimental data was developed. Calculated results indicate that a second-order solution adequately describes the behavior of combustion instability oscillations over a broad range of engine operating conditions, but that higher order effects must be accounted for in order to investigate engine triggering

    Similar works