15 research outputs found

    Kex2 protease converts the endoplasmic reticulum α1,2-mannosidase of Candida albicans into a soluble cytosolic form

    Get PDF
    Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-α1,2-mannosidase antibody. The N-mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 α1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that α1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound α1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of α-mannosidase activity in a kex2Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound α1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free N-oligosaccharides revealed that cytosolic α1,2-mannosidase E-I trims free Man8GlcNAc2 isomer B into Man7GlcNAc2 isomer B. This is believed to be the first report demonstrating the presence of soluble α1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell

    Heterologous expression and biochemical characterization of an 1,2-mannosidase encoded by the Candida albicans MNS1 gene

    No full text
    Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans , an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an α1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble α1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise α1,2-mannosidases in other biological systems as well

    Endoplasmic Reticulum α-Glycosidases of Candida albicans Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction▿

    Get PDF
    The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc3Man9GlcNAc2 N-glycan is processed by α-glucosidases I and II and α1,2-mannosidase to generate Man8GlcNAc2. This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. In Saccharomyces cerevisiae, CWH41, ROT2, and MNS1 encode for α-glucosidase I, α-glucosidase II catalytic subunit, and α1,2-mannosidase, respectively. We disrupted the C. albicans CWH41, ROT2, and MNS1 homologs to determine the importance of N-oligosaccharide processing on the N-glycan outer-chain elongation and the host-fungus interaction. Yeast cells of Cacwh41Δ, Carot2Δ, and Camns1Δ null mutants tended to aggregate, displayed reduced growth rates, had a lower content of cell wall phosphomannan and other changes in cell wall composition, underglycosylated β-N-acetylhexosaminidase, and had a constitutively activated PKC-Mkc1 cell wall integrity pathway. They were also attenuated in virulence in a murine model of systemic infection and stimulated an altered pro- and anti-inflammatory cytokine profile from human monocytes. Therefore, N-oligosaccharide processing by ER glycosidases is required for cell wall integrity and for host-fungus interactions
    corecore