6 research outputs found

    Supporting data on characterisation of linker switch mutants of Plasmodium falciparum heat shock protein 110 and canonical Hsp70

    No full text
    Here, we present data on characterisation of the linker of Plasmodium falciparum Hsp110 (PfHsp70-z) relative to the linker of canonical Hsp70s in support of a co-published article [1]. The linker of PfHsp70-z was switched with that of canonical Hsp70s, represented by PfHsp70–1 (cytosolic counterpart of PfHsp70-z) and E. coli Hsp70/DnaK. The datasets represent comparative analyses of PfHsp70-z, PfHsp70–1, and E. coli DnaK, relative to their linker switch mutants; PfHsp70-zLS, PfHsp70–1LS, DnaKLS, respectively. Intrinsic and extrinsic fluorescence spectroscopic analyses were employed to elucidate effects of the mutations on the structural features of the proteins. The structural conformations of the proteins were analysed in the absence as well as presence of nucleotides. In addition, stability of the proteins to stress (pH changes and urea) was also determined. Surface plasmon resonance (SPR) was employed to determine affinity of the proteins for ATP. The relative affinities of PfHsp70-z and PfHsp70–1 for the parasite cytosol localised, J domain co-chaperone, PfHsp40, was determined by SPR analysis. The effect of the linker of PfHsp70-z on the interaction of DnaKLS with DnaJ (a co-chaperone of DnaK), was similarly determined. These data could be used for future investigations involving protein-protein/ligand interactions as described in [1]. The raw data obtained using the various techniques here described are hosted in the Mendeley Data repository at [2]

    Biophysical analysis of Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop) reveals a monomer that is characterised by folded segments connected by flexible linkers

    Get PDF
    Abstract Plasmodium falciparum causes the most lethal form of malaria. The cooperation of heat shock protein (Hsp) 70 and 90 is thought to facilitate folding of select group of cellular proteins that are crucial for cyto-protection and development of the parasites. Hsp70 and Hsp90 are brought into a functional complex that allows substrate exchange by stress inducible protein 1 (STI1), also known as Hsp70-Hsp90 organising protein (Hop). P. falciparum Hop (PfHop) co-localises and occurs in complex with the parasite cytosolic chaperones, PfHsp70‐1 and PfHsp90. Here, we characterised the structure of recombinant PfHop using synchrotron radiation circular dichroism (SRCD) and small-angle X-ray scattering. Structurally, PfHop is a monomeric, elongated but folded protein, in agreement with its predicted TPR domain structure. Using SRCD, we established that PfHop is unstable at temperatures higher than 40°C. This suggests that PfHop is less stable at elevated temperatures compared to its functional partner, PfHsp70‐1, that is reportedly stable at temperatures as high as 80°C. These findings contribute towards our understanding of the role of the Hop-mediated functional partnership between Hsp70 and Hsp90

    Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function

    No full text
    Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70) function. Heat shock protein 70 (Hsp70) are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function

    Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    Get PDF
    S1 Fig. KPf and PfHsp70 do not co-purify with PfAdoMetDC. Western blot representing the purification of PfAdoMetDC expressed in E. coli BL21 (DE3) Star cells rehosted with various chaperone combinations. Lanes: U–PfAdoMetDC expressed in the absence of supplemented chaperones; K–PfAdoMetDC co-expressed with supplemented DnaK; KPf–PfAdoMetDC expressed in cells supplemented with KPf; Pf70 –PfAdoMetDC expressed in cells supplemented with PfHsp70; K-EL–PfAdoMetDC expressed in cells supplemented with DnaK and GroEL-GroES; KP-EL–PfAdoMetDC expressed in cells supplemented with KPf and GroEL-GroES; Pf70-EL–PfAdoMetDC expressed in cells supplemented with PfHsp70 and GroEL-GroES; +C–positive consisting of purified PfHsp70 protein.Western blot analysis of PfHsp70 (70 kDa) detected using α-PfHsp70 antibody. Numbers to the left represent protein markers (Fermentas) in kDa.S2 Fig. Sequence alignment of PfHsp70 and E. coli DnaK. Sequence alignment of E. coli DnaK (accession number: BAA01595.1) and PfHsp70 (accession number: PF08_0054) were conducted using ClustalW and Boxshade. The following structural features are highlighted: the highly conserved linker segment (black horizontal line) which separates the ATPase domain from the peptide binding domain. Residues Y145, N147, D148, N170 and T173 in the ATPase domain that interact with DnaJ as reviewed by Shonhai et al (8) are shown with black arrows. Residues G400, D526 and G539 in the peptide binding domain of DnaK that are important for interaction with DnaJ, and the aligned residues in PfHsp70 are shown as black arrows. Identical residues are presented in white against a black background and similar residues are shown in black against a grey background).S1 Table. E. coli strains and plasmids used in this study.S2 Table. Description of primers used towards generation of destination plasmids.S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The coexpression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdo- MetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdo- MetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial proteins in E. coli.The National Research Foundation for an equipment grant (UID, 75464) awarded to AS. AS is a recipient of a Georg Foster research fellowship awarded by the Alexander von Humboldt Foundation of Germany. XHM is a recipient of a National Research Foundation (South Africa) scarce skills scholarship and also received a grant from the University of Zululand Research Committee. AB is a recipient of a postdoctoral fellowship awarded by the NRF.http://www.plosone.orgam2016BiochemistryUP Centre for Sustainable Malaria Control (UP CSMC
    corecore