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Abstract

Plasmodium falciparum causes the most lethal form of malaria. The cooperation of heat

shock protein (Hsp) 70 and 90 is thought to facilitate folding of select group of cellular pro-

teins that are crucial for cyto-protection and development of the parasites. Hsp70 and

Hsp90 are brought into a functional complex that allows substrate exchange by stress induc-

ible protein 1 (STI1), also known as Hsp70-Hsp90 organising protein (Hop). P. falciparum

Hop (PfHop) co-localises and occurs in complex with the parasite cytosolic chaperones,

PfHsp70-1 and PfHsp90. Here, we characterised the structure of recombinant PfHop using

synchrotron radiation circular dichroism (SRCD) and small-angle X-ray scattering. Structur-

ally, PfHop is a monomeric, elongated but folded protein, in agreement with its predicted

TPR domain structure. Using SRCD, we established that PfHop is unstable at temperatures

higher than 40˚C. This suggests that PfHop is less stable at elevated temperatures com-

pared to its functional partner, PfHsp70-1, that is reportedly stable at temperatures as high

as 80˚C. These findings contribute towards our understanding of the role of the Hop-medi-

ated functional partnership between Hsp70 and Hsp90.

1. Introduction

Heat shock proteins (Hsp) serve primarily as protein folding facilitators. They also participate

in several other processes, such as protein transport, assembly/disassembly of protein com-

plexes, protein degradation, amongst others [1]. Their role in the survival and pathogenicity of

malaria parasites is increasingly becoming apparent [2, 3, 4]. Plasmodium falciparum is the

agent for the most lethal form of malaria. It has been reported that the cytosolic P. falciparum
heat shock protein 70–1 (PfHsp70-1) is cyto-protective due to its ability to suppress protein

mis-folding and aggregation under stressful conditions [5, 6]. In addition, another cytosolic
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molecular chaperone, P. falciparum Hsp90 (PfHsp90) is essential [7]. The cooperation of

Hsp70 and Hsp90 is known to facilitate folding and function of proteins implicated in cell

development, such as steroid hormone receptors and kinases [8, 9].

Stress inducible protein 1 (STI1) was first described in mouse [10], and now also known as

Hsp70-Hsp90 organising protein (Hop), acts as a module that allows Hsp70 and Hsp90 to

interact stably, thereby facilitating substrate transfer from Hsp70 to Hsp90. Interestingly,

Hsp70 and Hsp90 resident in the cytosols of E. coli and yeast as well as their homologs local-

ized to mouse ER were shown to interact directly independent of Hop mediation [11, 12, 13,

14]. Although E. coli lacks a Hop homolog [15] and the same protein is not essential in yeast

[16], it has been reported to play an important role in the development of Trypanosoma cruzi
and Trypanosoma brucei parasites [17]. This shows that the role of Hop varies across species

and developmental stages. In light of the essential roles of the P. falciparum cytosol localised

chaperones, PfHsp90 and PfHsp70-1, PfHop has been proposed as a potential antimalarial

drug target [18, 19] This is partly because it occurs in complex with the two chaperones, and

also exhibits some degree of sequence divergence from the human homolog, thus raising pros-

pects for selective targeting by small molecule inhibitors [18]. Indeed, in some disease models

such as cancer [20] and leishmaniasis [21, 22], the essential role of Hop has made it a promis-

ing drug target.

Hop is a conserved and stress inducible protein that possesses three tetratricopeptide

repeats (TPR): TPR1, TPR2A and TPR2B [10]. Both Hsp70 and Hsp90 interact with Hop via

the C-terminal EEVD motif, present in the two molecular chaperones [19, 23]. Hop interacts

with Hsp70 and Hsp90 via its TPR1 and TPR2A domains, respectively [23]. While for a long

time the role of the TPR2B domain of Hop has remained largely elusive, it is now thought that

Hsp70 first binds to the TPR1 domain of Hop before switching to the TPR2B domain to facili-

tate substrate transfer to Hsp90 [20, 23].

In light of the importance of both PfHsp70-1 and PfHsp90 in the survival of the malaria

parasite, there has been growing interest in identifying inhibitors targeting the function of

these two molecular chaperones. Compounds that inhibit PfHsp70-1 [24, 25, 26] and PfHsp90

[9, 27] have been identified, and some of them exhibit antiplasmodial activity. Some com-

pounds that target PfHsp90 function reverse parasite resistance to traditional antimalarial

drugs, such as chloroquine (reviewed in [28]). We previously described Plasmodium falcipa-
rum Hop (PfHop), which co-localises and associates with both PfHsp70-1 and PfHsp90 [18,

19]. While Hop in other organisms, such as yeast and human, has been rather extensively char-

acterised, the structure and function of PfHop remain to be elucidated.

Here, we show that PfHop is a monomeric, elongated but folded protein, which loses most

of its secondary structure at temperatures above 40 ºC. We discuss the implications of our

findings with respect to the role of PfHop in coordinating the Hsp70-Hsp90 pathway in P.

falciparum.

2. Methods and materials

2.1 Materials

Reagents used in this study, unless otherwise stated, were purchased from Merck Chemicals

(Darmstadt, Germany), Thermo Scientific (Illinois, USA), Zymo Research (USA), Melford

(Suffolk, UK), and Sigma-Aldrich (USA). Nickel NTA resin was purchased from Thermo Sci-

entific (USA). ECL was purchased from (ThermoFisher Scientific, USA). The expression and

purification of his-tagged recombinant forms of PfHop was confirmed by Western blotting

using anti-His antibodies (Thermo Scientific, USA). Furthermore, rabbit raised anti-PfHop
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antibodies (Eurogentec, Belgium; [18]) were also used to confirm the presence of recombinant

PfHop protein.

2.2 Expression and purification of recombinant PfHop

Recombinant PfHop (PF3D7_1434300) was overexpressed in Escherichia coli XL1 Blue cells

and purified by nickel affinity chromatography as previously described [18, 19]. The Ni-affin-

ity purified proteins were extensively dialysed in SnakeSkin dialysis tubing 10 000 MWCO

(ThermoFisher Scientific, USA) against buffer A [20 mM Tris-HCl, pH 7.5, 10 mM NaCl, 5%

(v/v) glycerol, 0.2 mM Tris-carboxyethyl phosphine (TCEP)]. The protein from Ni-NTA chro-

matography was used to perform conventional CD spectroscopy and tryptophan fluorescence

assays. SRCD and SAXS analyses were performed using protein that was further purified using

ion exchange and size exclusion chromatography as follows. The dialysed protein was further

purified using anion exchange chromatography using a Tricorn MonoQ 4.6/100 PE column

(G.E Healthcare LS, USA). PfHop was eluted by applying buffer B (20 mM Tris-HCl, pH 7.5,

10 mM NaCl, 0.2 mM TCEP) to the column using a linear (0.1–1.0 M) NaCl gradient. As the

final purification step and to evaluate the oligomeric state of PfHop, size exclusion chromatog-

raphy was used. Following anion exchange, fractions containing pure PfHop were pooled

together and loaded onto a HiLoad 16/600 SuperdexTM 200 pg column equilibrated with buffer

C (10 mM Tris-HCl, pH 8, 300 mM NaCl containing 5% glycerol, 0.2 mM TCEP). Eluted frac-

tions were analysed using SDS-PAGE to determine the purity and homogeneity of the PfHop

protein. Authenticity of the purified protein was confirmed by sequencing using MALDI-TOF

mass spectrometry at the Biocenter Oulu Proteomics Core Facility, Oulu University, Finland.

The protein concentration was determined by measuring the UV absorbance at 280 nm using

a Nanodrop ND100 (ThermoFisher Scientific, USA).

The molecular weight of PfHop was determined using multi-angle static light scattering

(MALS) coupled to size exclusion chromatography using a Superdex S200 Increase 10/300 GL

column (GE Healthcare). The column, equilibrated with buffer C, was coupled to a mini

DAWN TREOS MALS detector (Wyatt Technology, Germany) and an ERC RefraMAx520 dif-

ferential refractometer (ERC, Germany). 100 μg of PfHop in buffer C was injected into the col-

umn using a flow rate of 0.5 ml/min. BSA and ovalbumin were used as molecular-weight

controls. The molecular weight of PfHop was determined based on the measured light scatter-

ing at three different angles and the refractive index using the ASTRA software version

6.1.5.22 (Wyatt Technology, Germany).

2.3 Investigation of the secondary structure of PfHop

The secondary structure of PfHop was investigated using synchrotron radiation (SR) and con-

ventional circular dichroism (CD) spectroscopy. The spectral measurements were conducted

at the UV-CD12 beam line (Anka, Karlsruhe) under temperature-controlled conditions.

PfHop at a concentration of 0.5 mg/ml dialysed in buffer D (10 mM K3PO4, pH 7.0, 150 NaF)

was analysed using a 98.56 μm path length round cell cuvette (Suprasil, Hellma Analytics, Ger-

many) at a constant temperature of 10˚C. A total of 3 full spectral scans were recorded from

280 to 175 nm and averaged. CD spectroscopy experiments were done using a Jasco J-1500

CD spectrometer (JASCO, Tokyo, Japan) and Chirascan CD Spectrometer (Applied Photo-

physics, UK) with a temperature-controlled Peltier. Recombinant proteins at a final concentra-

tion of 2 μM were analysed using a 2-mm path-length quartz cuvette (Hellma). Spectral scans

were recorded from 250 to 180 nm and averaged for least 3 scans. The SRCD data were pro-

cessed and deconvoluted using the Dichroweb server [29] and the CONTINLL algorithm with

the SP175 reference set [30]. To further predict the secondary structure content of PfHop, the
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BeStSel server (http://bestsel.elte.hu/; [31, 32]) and the Phyre2 server (http://sbg.bio.ic.ac.uk/

phyre2/; [33]) were also used. In order to investigate the heat stability of PfHop, the protein

was subjected to increasing temperature (10˚C to 90˚C using 5˚C intervals for SRCD and 20 to

90˚C for CD) and full spectra recorded when the temperature was raised from 20˚C—90˚C.

Similarly, spectra were recorded upon subjecting the protein to a downward shift in tempera-

ture from 90˚C to 20˚C. Melting curves were plotted by monitoring the CD signal at 192, 210

and 220 nm using the Jasco J-1500 CD spectrometer and further validated using Chirascan

CD spectrometer (Applied Photophysics, UK). The CD spectral measurements were expressed

as ratio of signal recorded at a particular temperature compared to the SRCD signal recorded

at 10˚C. This facilitated estimation of the folded protein fraction of the protein at the respective

temperature as previously described [34, 35]. The tertiary structure of the protein was probed

in the presence of varying concentrations of denaturants, urea (0–8 M) and guanidine hydro-

chloride (0–6 M).

Fluorescence spectra were recorded following initial excitation at 295 nm and emission was

determined at wavelength range of 300 nm to 400 nm using JASCO FP-6300 spectrofluorome-

ter (JASCO, Tokyo, Japan).

2.4 Small-angle X-ray scattering analysis for PfHop shape determination

Synchrotron small-angle X-ray scattering (SAXS) data were collected on the EMBL Hamburg

Outstation beam line P12 at PETRA III/DESY (Hamburg). PfHop (2.2 mg/ml) and buffer sam-

ples were exposed to X-rays with a wavelength of 1.240 Å for 0.045 s. Pre-processed data were

further analysed with the ATSAS software package [36]. The distance distribution calculation

and ab initio modelling were performed using GNOM [37] and the GASBOR package [38],

respectively. Human Hop TPR1 (1ELW; [39]) and bakers’s yeast TPR2AB domains (3QU3;

[23]) were manually fitted in the ab initio envelope using PyMOL 2.3.2 (Schrödinger, USA).

An Rg value of 5.3 nm was determined visually from the linear part of the low scattering angles

(0.0087–0.0715 nm-1) using PRIMUS [40]. The Dmax for PfHop was estimated as 24 nm, also

using PRIMUS.

3. Results

3.1 Oligomeric state of recombinant PfHop

Recombinant PfHop was purified using nickel affinity chromatography as previously

described [18]. The protein was further purified using ion exchange and subsequently sub-

jected to size exclusion chromatography (S1 Fig).

Hop has been reported to exist as either monomer [21, 41, 42] or dimer [43, 44], andas

largely monomeric, forming weak dimers [45]. Based on size exclusion chromatography,

PfHop eluted as an elongated monomer under reducing conditions. A small fraction of dimer,

likely due to partial oxidation, could be seen in some batches (S1C Fig, lanes 1–5). A recent

study [46] reported that PfHop exists as a dimer. However, using multi-angle light scattering

coupled to size exclusion chromatography we observed that PfHop occurs as a monomer of 73

kDa (Fig 1). This is 8% larger than the calculated theoretical molecular weight 67.6 kDa. A pre-

vious independent study [20] similarly reported an apparently higher molecular weight for

STI1 that was determined using gel filtration. As a control, we determined molecular weights

for bovine serum albumin (73 kDa) and ovalbumin (45 kDa), which were 10% and 6%, respec-

tively, larger than their calculated theoretical molecular weights.
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3.2 Analysis of the secondary structure of PfHop

To confirm the folding state and secondary structure composition of recombinant PfHop, syn-

chrotron radiation circular dichroism (SRCD) spectroscopy was conducted. SRCD spectra

were recorded between 175 and 280 nm at 10˚C. The PfHop spectra exhibited 2 negative min-

ima around 222 and 208 nm and a positive peak at 194 nm (Fig 2A), characteristic of a pre-

dominantly α-helical protein [47] as previously reported [46]. Deconvolution of the spectra

with Dichroweb indicated a predominantly α-helical structure comprising 77% α-helices

(Table 1). This was supported by predictions from BeStSel and Phyre2 (S1 Table). The helical

content estimated here for PfHop is comparable to that for Leishmania braziliensis Hop

(LbHop) which was reported to be around 75% [42]. Notably, the PfHop helical content of

77% we observed here is much higher than that the 57% obtained for the same protein in a

recent independent study [46]. While, it is not clear why such a wide discrepancy has been

reported for PfHop helical content, our findings reconcile with that reported for its close

homolog, LbHop [42]. Overall, the predominantly α-helical structure of PfHop is consistent

with the predicted three-dimensional model of PfHop which showed that all its three TPR

motifs are α-helical in nature [18]. Furthermore, based on the previously generated three-

dimensional model of PfHop, residues of PfHop that are implicated in making direct contact

with PfHsp70-1/PfHsp90 are positioned within the grooves of the α-helical TPR domains [18].

PfHop mediates interaction between PfHsp70-1 and PfHsp90 [18, 20], and its expression is

heat-induced [18]. The roles of these two chaperones become particularly important when the

parasite is subjected to physiological stress, such as during clinical malaria fever episodes [48].

It is therefore important that heat shock proteins of parasite origin exhibit resilience to heat

stress conditions. PfHsp70-1 is stable at high temperatures and is most active at 48 ºC—50 ºC
and is known to retain its ATPase activity at up to 80 ºC [6; 34]. However, it remains to be

established whether PfHop exhibits the same resilience to heat stress. To probe this, we investi-

gated the heat stability of recombinant PfHop in vitro. As a control, the denaturation of PfHop

exposed to urea (0–8 M) was also monitored using CD (Fig 2C). Next, we monitored the

folded fraction of PfHop in response to exposure to increased temperature conditions using

SRCD (10˚C to 90˚C) (Fig 2A) and CD spectrometry (assay was conducted at 20˚C—90˚C; Fig

2B). PfHop appeared stable at temperatures lower than 40˚C. However, at higher temperatures

the protein lost its fold, and only 50% of the protein retained its folded state at 45˚C (Fig 2C).

Notably, the spectra suggest that the protein simultaneously loses both its α-helical and β-com-

positions in response to heat stress through two unfolding transitions (Tm1 and Tm2) (Fig 2B).

CD spectrometry was used to monitor heat-induced denaturation of PfHop at a temperature

Fig 1. Determination of the oligomeric status of PfHop. Size exclusion chromatography of PfHop displays a single

peak. The molecular weight of the peak calculated using static light scattering, shown as a black line, represents a

PfHop monomer.

https://doi.org/10.1371/journal.pone.0226657.g001
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range of 20˚C—90˚C (Fig 2B). The double phased unfolding transitions we observed here

closely mirror those reported for PfHop in an independent study [46]. An attempt to refold

the heat-denatured PfHop by lowering temperature from 90˚C—20˚C showed that the protein

subjected to temperatures above 70˚C could not refold. Our findings suggest that PfHop is less

Fig 2. Secondary structure analysis of PfHop. (A) SRCD spectrum of full-length PfHop. SRCD spectral scans monitoring denaturation of PfHop upon exposure to

increasing heat stress (10˚C to 90˚C). (B) Shown is the CD spectrum of PfHop monitored at 222 nm upon thermal denaturation by upscaling temperature from 20˚C to

90˚C. Similarly, the CD spectrum for the renaturation attempt of PfHop upon temperature downscale from 90˚C to 20˚C is illustrated. The thermal transitions (Tm1

and Tm2) are shown. (C) The folded fraction of PfHop as a function of temperature was monitored using CD signals at 192, 210 and 220 nm. (D) Urea-induced

unfolding of PfHop is shown. (E) Represents the fluorescence emission spectra of PfHop monitored at 300–450 nm after an initial excitation at 295 nm. The

recombinant PfHop protein tryptophan fluorescence emission spectra were recorded under various GdHCl and urea concentrations. Notable, is the red spectral shift

obtained for of PfHop exposed to various GdHCl and urea concentrations.

https://doi.org/10.1371/journal.pone.0226657.g002
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stable to heat stress than PfHsp70-1, whose ATPase activity was found to be optimal around

50˚C [34]. In addition, PfHsp70-1 exhibits chaperone activity (suppressing heat induced

aggregation of protein) at 48˚C [6].

Furthermore, tryptophan fluorescence spectroscopy was conducted to monitor the tertiary

structural organisation of PfHop in the presence of varying amounts of urea and guanidine

hydrochloride (GdHCl). A red shift was observed with maximum peaks at 350 nm (associated

with 6 M GdHCl) and 343 nm (associated with 8 M urea) (Fig 2E). PfHop was more sensitive

to GdHCl, which is a stronger denaturant. This is in agreement to a previous observation for

PfHsp70-1 protein [34].

3.3 Low-resolution structure of PfHop in solution

In order to gain further insight into the structure of PfHop, we determined its low-resolution

structure in solution using SAXS (Fig 3). The X-ray scattering curve (Fig 3A), the Kratky plot

(Fig 3B), and the distance distribution function (Fig 3C) together indicate that PfHop is an

elongated protein with a maximum dimension of approximately 24 nm (Table 1). PfHop con-

sists mostly of folded parts connected by flexible linkers. Thus, as expected, the TPR domains

likely are arranged like pearls on a string. The distance distribution function (Fig 3C) indicates

at least two stable domains with maxima at ~3 and ~5 nm within the Dmax of 240 Å. The Dmax

obtained for PfHop falls within the range obtained for other Hop homologues; 180 Å for

LbHop [42], 193 Å for Hop [43], 230 Å for PfHop [46] and 260 Å for STI1 [20]. Altogether,

these values confirm Hop to generally assume an extended conformation across species. An ab
initio dummy residue model calculated using GASBOR (Fig 3D) is consistent with the above

data and shows an excellent fit to the experimental data (Fig 3) with a χ2 value of 1.06. The

model consists of an elongated shape with some more compact regions, as observed for STI1

[20]. This model visually fits perfectly to crystal structures of human and yeast Hop TPR1

(1ELW, [39]) as well as that of the TPR2AB (3UQ3, [23]) domain (Fig 3D).

4. Discussion

PfHop is thought to facilitate the functional cooperation between PfHsp70-1 and PfHsp90,

both prominent cytosolic molecular chaperones of P. falciparum [18, 19]. The Hsp70-Hop-

Hsp90 pathway plays an important role in cellular development, as it facilitates folding and

maturation of proteins, such as kinases and steroid hormone receptors [49]. Inhibition of both

PfHsp90 and PfHsp70-1 leads to parasite death [7, 24, 26], making these molecular chaperones

potential antimalarial drug targets. In the current study, we demonstrated that PfHop is unsta-

ble at temperatures above 40˚C. Furthermore, the protein is denatured at elevated tempera-

tures through two distinct unfolding transitions (Fig 2), in agreement with a recent

independent study [46]. The two unfolding transitions are consistent with a protein possessing

domains of varied conformational stability. This is consistent with the multi-domain nature of

PfHop as observed in the current study. In agreement with this, the N-terminus of Hop is

reportedly flexible while its C-terminus is deemed to be compact [20].

We previously observed that PfHop, PfHsp70-1, and PfHsp90 occur in a complex, and that

PfHop directly associates with the EEVD domains of PfHsp70-1 and PfHsp90 [18, 19]. This

Table 1. SAXS parameters for PfHop.

Sample Rg (nm) Dmax (Å) MW (kDa) Expected MW (kDa)

SLS 73 67.6

SAXS 5.3 240 67.6

https://doi.org/10.1371/journal.pone.0226657.t001
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suggests that PfHop modulates functional cooperation between PfHsp70-1 and PfHsp90. The

development of clinical malaria is associated with body temperature rising to 41.6˚C. At such

high temperatures, the role of heat shock proteins in maintaining proteostasis becomes

unquestionably important, as is evidenced by the elevated expression of key molecular chaper-

ones, such as PfHsp70-1 and PfHsp90 [7, 50]. It is intriguing to imagine how PfHsp70-1 and

PfHsp90 cooperate in the presence of limiting levels of PfHop, as occurs during sustained heat

stress conditions induced by malaria fever. It is possible that under extended stress conditions,

the role of Hop becomes less vital and that perhaps Hsp70 and Hsp90 may directly interact.

Indeed, a study showed that despite lack of Hop in E. coli, Hsp70 and Hsp90 from E. coli are

capable of direct interaction [15]. In addition, Hsp70 and Hsp90 chaperones resident in yeast

cytosol and mouse ER were reported to directly bind without Hop as an adaptor [13, 14]. In a

previous study, we observed complexes of PfHsp70-1 and PfHsp90 in which PfHop was pres-

ent based on size exclusion chromatography of parasite lysates [18]. However, we also

observed eluates representing a complex of PfHsp70-1 and PfHsp90, in which PfHop was

absent [18]. A non-canonical Hop homologue from Caenorhabditis elegans lacks the TPR1

domain, hence it is thought to be biased towards binding to Hsp90 than Hsp70 [51]. Alto-

gether, our findings and those of others suggest that the function of Hop may vary across spe-

cies and may also depend on the prevailing cellular physiological conditions.

Fig 3. SAXS analysis of PfHop. (A) Fit of a calculated SAXS curve based on an ab initio model (red line) on the

experimental SAXS curve (grey dots) measured for PfHop. (B) Kratky plot derived from the scattering data. (C)

Distance distribution function. (D) An Ab initio model of PfHop (green), determined using GASBOR compared with

crystal structures of human Hop TPR2AB (3UQ3) and baker’s yeast TPR1 domains (1ELW) (cyan). The lower panel is

related to the upper one, by a 90˚ clockwise rotation along the plane of view.

https://doi.org/10.1371/journal.pone.0226657.g003
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Findings on the oligomeric status of Hop have remained controversial as independent stud-

ies have reported it to be either monomeric [41] or dimeric [44], or largely monomeric but

forming also weak dimers [45]. In the current study, we sought to establish the oligomeric sta-

tus of PfHop. Based on size-exclusion chromatography and multi-angle static light scattering,

we conclude that PfHop occurs as a monodisperse monomer (Fig 1). This conflicts with a

recent study which reported PfHop to exist as a dimer [46]. It is important to note that we also

observed a dimeric fraction which we think is on account of unspecific disulphide bridge for-

mation that occurs under non-reducing conditions. Interestingly, our previous findings using

SPR showed that PfHop self-associates with higher affinities [19], suggesting that PfHop may

form oligomers. It is possible that PfHop self-association occurs transiently, hence may be

detected by techniques such as SPR but not by other techniques such as SEC. This could

account for the conflicting findings. On the other hand, human Hop has been reported to

form dimers [44, 52, 53], but it remains to be confirmed whether these are of functional signifi-

cance. In addition, Hop has also been suggested to form elongated monomers, which are diffi-

cult to resolve using gel filtration [41]. Indeed, the low-resolution solution structure

determined by SAXS shows that PfHop is a highly elongated and multidomain protein. This

agrees with several previous independent studies [20, 42, 43, 46]. Notably, we observed that the

folded domains of PfHop are organised like beads on a string. This is consistent with the pre-

dicted concave nature of its predominantly α-helical TPR motifs [18]. TPR motifs of human

Hop have been described to occur as grooves into which the C-terminal EEVD motifs of

Hsp90 and Hsp70 bind in extended form [39]. Our PfHop SAXS data is consistent with this

proposed model.

Altogether, our findings established that PfHop is an elongated, predominantly α-helical,

monomeric, protein. Its heat stability is lower than that reported for PfHsp70-1, suggesting

that its function may be compromised at high temperatures associated with clinical malaria

progression.

Supporting information

S1 Fig. Purification of PfHop by ion exchange and size exclusion chromatography. (A)

SDS-PAGE analysis of the five samples collected from the main peak (lanes 1–5). Ion exchange

chromatography of PfHop purification was monitored at 280 nm. Protein that bound to the

column was then eluted under NaCl gradient. The five fractions obtained were pooled together

for subsequent SEC analysis. (B) SDS-PAGE analysis of several fractions (lanes 1–11) of

PfHop obtained by SEC are shown. (C) SDS-PAGE analysis of several fractions (lanes 1–12) of

PfHop obtained by SEC are shown.

(DOCX)

S2 Fig. Mass spectrometry sequencing data for PfHop.
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S1 Table. PfHop secondary structure content.
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dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage.

Proc Natl Acad Sci. 2010, 107: 8381–8386. https://doi.org/10.1073/pnas.0914768107 PMID:

20404152

22. Hombach A, Clos J. No stress–Hsp90 and signal transduction in Leishmania. Parasitology. 2014,

141:1156–66. https://doi.org/10.1017/S0031182013002151 PMID: 24703183
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52. Bose S, Weikl T, Bügl H, Buchner J. Chaperone function of Hsp90-associated proteins. Science. 1996,

274: 1715–1717. https://doi.org/10.1126/science.274.5293.1715 PMID: 8939863

53. Hildenbrand ZL, Molugu SK, Herrera N, Ramirez C, Xiao C, Bernal RA. Hsp90 can accommodate the

simultaneous binding of the FKBP52 and HOP proteins. Oncotarget. 2011, 2: 43–58. https://doi.org/10.

18632/oncotarget.225 PMID: 21378414

PLOS ONE Biophysical analysis of Plasmodium falciparum Hop (PfHop)

PLOS ONE | https://doi.org/10.1371/journal.pone.0226657 April 28, 2020 13 / 13

https://doi.org/10.1007/s12192-016-0678-4
http://www.ncbi.nlm.nih.gov/pubmed/26894764
https://doi.org/10.1371/journal.pone.0025485
https://doi.org/10.1371/journal.pone.0025485
http://www.ncbi.nlm.nih.gov/pubmed/21980476
https://doi.org/10.1126/science.274.5293.1715
http://www.ncbi.nlm.nih.gov/pubmed/8939863
https://doi.org/10.18632/oncotarget.225
https://doi.org/10.18632/oncotarget.225
http://www.ncbi.nlm.nih.gov/pubmed/21378414
https://doi.org/10.1371/journal.pone.0226657

