20,510 research outputs found
Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites
The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions
Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures
Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data
Computer program conducts facilities utilization and occupancy survey
Computer program identifies the uses of all facilities and provides information on the net area in each room as well as the number and classification of people occupying them. The system also provides a means to indicate unsatisfactory work areas and may be able to be updated each month
Statistical analysis for thermometric sensors test program final report
Statistical models for regression analysis of thermometric sensor
The NASA/OAST telerobot testbed architecture
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented
Polymer matrix and graphite fiber interface study
Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized
Location, branching, and bank portfolio diversification: the case of agricultural lending
Agricultural credit ; Branch banks ; Bank loans ; Econometric models
Program for refan JT8D engine design, fabrication and test, phase 2
The objective of the JT8D refan program was to design, fabricate, and test certifiable modifications of the JT8D engine which would reduce noise generated by JT8D powered aircraft. This was to be accomplished without affecting reliability and maintainability, at minimum retrofit cost, and with no performance penalty. The mechanical design, engine performance and stability characteristics at sea-level and altitude, and the engine noise characteristics of the test engines are documented. Results confirmed the structural integrity of the JT8D-109. Engine operation was stable throughout the airplane flight envelope. Fuel consumption of the test engines was higher than that required to meet the goal of no airplane performance penalty, but the causes were identified and corrected during a normal pre-certification engine development program. Compared to the baseline JT8D-109 engine, the acoustically treated JT8D-109 engine showed noise reductions of 6 PNdB at takeoff and 11 PNdB at a typical approach power setting
Electronic health information exchange in underserved settings: examining initiatives in small physician practices & community health centers.
BackgroundHealth information exchange (HIE) is an important tool for improving efficiency and quality and is required for providers to meet Meaningful Use certification from the United States Centers for Medicare and Medicaid Services. However widespread adoption and use of HIE has been difficult to achieve, especially in settings such as smaller-sized physician practices and federally qualified health centers (FQHCs). We assess electronic data exchange activities and identify barriers and benefits to HIE participation in two underserved settings.MethodsWe conducted key-informant interviews with stakeholders at physician practices and health centers. Interviews were recorded, transcribed, and then coded in two waves: first using an open-coding approach and second using selective coding to identify themes that emerged across interviews, including barriers and facilitators to HIE adoption and use.ResultsWe interviewed 24 providers, administrators and office staff from 16 locations in two states. They identified barriers to HIE use at three levels-regional (e.g., lack of area-level exchanges; partner organizations), inter-organizational (e.g., strong relationships with exchange partners; achieving a critical mass of users), and intra-organizational (e.g., type of electronic medical record used; integration into organization's workflow). A major perceived benefit of HIE use was the improved care-coordination clinicians could provide to patients as a direct result of the HIE information. Utilization and perceived benefit of the exchange systems differed based on several practice- and clinic-level factors.ConclusionsThe adoption and use of HIE in underserved settings appears to be impeded by regional, inter-organizational, and intra-organizational factors and facilitated by perceived benefits largely at the intra-organizational level. Stakeholders should consider factors both internal and external to their organization, focusing efforts in changing modifiable factors and tailoring HIE efforts based on all three categories of factors. Collective action between organizations may be needed to address inter-organizational and regional barriers. In the interest of facilitating HIE adoption and use, the impact of interventions at various levels on improving the use of electronic health data exchange should be tested
- …