487 research outputs found

    Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction. A report from the Irbesartan in Heart Failure with Preserved Ejection Fraction Trial (I-Preserve)

    Get PDF
    Background—In patients with HF and preserved ejection fraction (HFpEF), little is known about the characteristics of and outcomes in those with and without diabetes. Methods—We examined clinical and echocardiographic characteristics and outcomes in the Irbesartan in Heart Failure with Preserved Ejection Fraction trial (I-Preserve), according to history of diabetes. Cox regression models were used to estimate hazard ratios (HR) for cardiovascular outcomes adjusted for known predictors, including age, sex, natriuretic peptides, and comorbidity. Echocardiographic data were available in 745 patients and were additionally adjusted for in supplementary analyses. Results—Overall, 1134 of 4128 patients (27%) had diabetes. Compared to those without diabetes, they were more likely to have a history of myocardial infarction (28% vs. 22%), higher BMI (31kg/m2 vs. 29kg/m2), worse Minnesota living with HF score (48 vs. 40), higher median NT-proBNP concentration (403 vs 320 pg/ml; all p<0.01), more signs of congestion but no significant difference in LVEF. Patients with diabetes had a greater left ventricular (LV) mass and left atrial area than patients without diabetes. Doppler E wave velocity (86 vs 76 cm/sec, p<0.0001) and the ratio of E/e' (11.7 vs 10.4, p=0.010) were higher in patients with diabetes. Over a median follow-up of 4.1 years, cardiovascular death or HF hospitalization occurred in 34% of patients with diabetes vs. 22% of those without diabetes; adjusted HR 1.75 (95% CI 1.49-2.05) and 28% vs. 19% of patients with and without diabetes died; adjusted HR 1.59 (1.33-1.91). Conclusions—In HFpEF, patients with diabetes have more signs of congestion, worse quality of life, higher NT-proBNP levels, and a poorer prognosis. They also display greater structural and functional echocardiographic abnormalities. Further investigation is needed to determine the mediators of the adverse impact of diabetes on outcomes in HFPEF, and whether they are modifiable

    Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature

    Get PDF
    ObjectivePatients with severe left ventricular pressure overload secondary to aortic stenosis can present with signs and symptoms of heart failure despite normal left ventricular ejection fraction. This process occurs, at least in part, as a result of left ventricular pressure overload–induced extracellular matrix remodeling that promulgates increased left ventricular stiffness and impaired diastolic function. However, the determinants that drive extracellular matrix remodeling in this form of left ventricular pressure overload remain to be fully defined.MethodsLeft ventricular pressure overload was induced in mature pigs (n = 15) by progressive ascending aortic cuff inflation (once per week for 4 weeks), whereby left ventricular mass, left ventricular ejection fraction, and regional myocardial stiffness (rKm) were compared with referent controls (n = 12). Determinants of extracellular matrix remodeling were assessed by measuring levels of mRNA expression for fibrillar collagens, matrix metalloproteinases, and tissue inhibitors of matrix metalloproteinase 1 and 4.ResultsWith left ventricular pressure overload, left ventricular mass and rKm increased by 2- and 3-fold, respectively, compared with control, with no change in left ventricular ejection fraction. Left ventricular myocardial collagen increased approximately 2-fold, which was accompanied by reduced solubility (ie, increased cross-linking) with left ventricular pressure overload, but mRNA expression for fibrillar collagen and matrix metalloproteinases remained relatively unchanged. In contrast, a robust increase in mRNA expression for tissue inhibitors of matrix metalloproteinase-1 and 4 occurred with left ventricular pressure overload.ConclusionsIn a progressive model of left ventricular pressure overload, which recapitulates the phenotype of aortic stenosis, increased extracellular matrix accumulation and subsequently increased myocardial stiffness were not due to increased fibrillar collagen expression but rather to determinants of post-translational control that included increased collagen stability (thereby resistant to matrix metalloproteinase degradation) and increased endogenous matrix metalloproteinase inhibition. Targeting these extracellular matrix post-translational events with left ventricular pressure overload may hold both diagnostic and therapeutic relevance

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    Get PDF
    Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood

    Temporally and Longitudinally Tailored Dynamic Space-Time Wave Packets

    Full text link
    In general, space-time wave packets with correlations between transverse spatial fields and temporal frequency spectra can lead to unique spatiotemporal dynamics, thus enabling control of the instantaneous light properties. However, spatiotemporal dynamics generated in previous approaches manifest themselves at a given propagation distance yet not arbitrarily tailored longitudinally. Here, we propose and demonstrate a new versatile class of judiciously synthesized wave packets whose spatiotemporal evolution can be arbitrarily engineered to take place at various predesigned distances along the longitudinal propagation path. Spatiotemporal synthesis is achieved by introducing a 2-dimensional spectrum comprising both temporal and longitudinal wavenumbers associated with specific transverse Bessel-Gaussian fields. The resulting spectra are then employed to produce wave packets evolving in both time and axial distance - in full accord with the theoretical analysis. In this respect, various light degrees of freedom can be independently manipulated, such as intensity, polarization, and transverse spatial distribution (e.g., orbital angular momentum). Through a temporal-longitudinal frequency comb spectrum, we simulate the synthesis of the aforementioned wave packet properties, indicating a decrease in relative error compared to the desired phenomena as more spectral components are incorporated. Additionally, we experimentally demonstrate tailorable spatiotemporal fields carrying time- and longitudinal-varying orbital angular momentum, such that the local topological charge evolves every ~1 ps in the time domain and 10 cm axially. We believe that our space-time wave packets can significantly expand the exploration of spatiotemporal dynamics in the longitudinal dimension, and potentially enable novel applications in ultrafast microscopy, light-matter interactions, and nonlinear optics

    Irbesartan in patients with heart failure and preserved ejection fraction

    Get PDF
    Background: Approximately 50% of patients with heart failure have a left ventricular ejection fraction of at least 45%, but no therapies have been shown to improve the outcome of these patients. Therefore, we studied the effects of irbesartan in patients with this syndrome. Methods: We enrolled 4128 patients who were at least 60 years of age and had New York Heart Association class II, III, or IV heart failure and an ejection fraction of at least 45% and randomly assigned them to receive 300 mg of irbesartan or placebo per day. The primary composite outcome was death from any cause or hospitalization for a cardiovascular cause (heart failure, myocardial infarction, unstable angina, arrhythmia, or stroke). Secondary outcomes included death from heart failure or hospitalization for heart failure, death from any cause and from cardiovascular causes, and quality of life. Results: During a mean follow-up of 49.5 months, the primary outcome occurred in 742 patients in the irbesartan group and 763 in the placebo group. Primary event rates in the irbesartan and placebo groups were 100.4 and 105.4 per 1000 patient-years, respectively (hazard ratio, 0.95; 95% confidence interval [CI], 0.86 to 1.05; P=0.35). Overall rates of death were 52.6 and 52.3 per 1000 patient-years, respectively (hazard ratio, 1.00; 95% CI, 0.88 to 1.14; P=0.98). Rates of hospitalization for cardiovascular causes that contributed to the primary outcome were 70.6 and 74.3 per 1000 patient-years, respectively (hazard ratio, 0.95; 95% CI, 0.85 to 1.08; P=0.44). There were no significant differences in the other prespecified outcomes. Conclusions: Irbesartan did not improve the outcomes of patients with heart failure and a preserved left ventricular ejection fraction. (ClinicalTrials.gov number, NCT00095238.)

    Baroreflex Activation Therapy for the Treatment of Heart Failure With a Reduced Ejection Fraction

    Get PDF
    AbstractObjectivesThe objective of this clinical trial was to assess the safety and efficacy of carotid BAT in advanced HF.BackgroundIncreased sympathetic and decreased parasympathetic activity contribute to heart failure (HF) symptoms and disease progression. Baroreflex activation therapy (BAT) results in centrally mediated reduction of sympathetic outflow and increased parasympathetic activity.MethodsPatients with New York Heart Association (NYHA) functional class III HF and ejection fractions ≤35% on chronic stable guideline-directed medical therapy (GDMT) were enrolled at 45 centers in the United States, Canada, and Europe. They were randomly assigned to receive ongoing GDMT alone (control group) or ongoing GDMT plus BAT (treatment group) for 6 months. The primary safety end point was system- and procedure-related major adverse neurological and cardiovascular events. The primary efficacy end points were changes in NYHA functional class, quality-of-life score, and 6-minute hall walk distance.ResultsOne hundred forty-six patients were randomized, 70 to control and 76 to treatment. The major adverse neurological and cardiovascular event–free rate was 97.2% (lower 95% confidence bound 91.4%). Patients assigned to BAT, compared with control group patients, experienced improvements in the distance walked in 6 min (59.6 ± 14 m vs. 1.5 ± 13.2 m; p = 0.004), quality-of-life score (–17.4 ± 2.8 points vs. 2.1 ± 3.1 points; p < 0.001), and NYHA functional class ranking (p = 0.002 for change in distribution). BAT significantly reduced N-terminal pro–brain natriuretic peptide (p = 0.02) and was associated with a trend toward fewer days hospitalized for HF (p = 0.08).ConclusionsBAT is safe and improves functional status, quality of life, exercise capacity, N-terminal pro–brain natriuretic peptide, and possibly the burden of heart failure hospitalizations in patients with GDMT-treated NYHA functional class III HF. (Barostim Neo System in the Treatment of Heart Failure; NCT01471860; Barostim HOPE4HF [Hope for Heart Failure] Study; NCT01720160

    Insulin treatment and clinical outcomes in patients with diabetes and heart failure with preserved ejection fraction

    Get PDF
    Aims: Insulin causes sodium retention and hypoglycaemia and its use is associated with worse outcomes in heart failure (HF) with reduced ejection fraction. We have investigated whether this is also the case in HF with preserved ejection fraction (HFpEF). Methods and results: We examined the association between diabetes/diabetes treatments and the risk of the primary composite of cardiovascular death or HF hospitalization, as well as other outcomes in adjusted analyses in CHARM-Preserved (left ventricular ejection fraction ≥ 45%), I-Preserve and TOPCAT (Americas) pooled. Of 8466 patients, 2653 (31%) had diabetes, including 979 (37%) receiving insulin. Patients receiving insulin were younger, had a higher body mass index, prevalence of ischaemic aetiology, N-terminal pro-B-type natriuretic peptide and use of diuretics, worse New York Heart Association class and signs and symptoms, and worse quality of life and renal function, compared to patients with diabetes not on insulin. Among the 1398 patients with echocardiographic data, insulin use was associated with higher left ventricular end-diastolic pressure and more diastolic dysfunction than in other participants. The primary outcome occurred at a rate of 6.3 per 100 patient-years in patients without diabetes, and 10.2 and 17.1 per 100 patient-years in diabetes patients without and with insulin use, respectively [fully adjusted hazard ratio (aHR) insulin-treated diabetes vs. other diabetes: 1.41, 95% confidence interval (CI) 1.23-1.63, P &lt; 0.001]. The adjusted HR is 1.67 (95% CI 1.20-2.32, p = 0.002) for sudden death (insulin-treated diabetes vs. other diabetes). Conclusions: Insulin use is associated with poor outcomes in HFpEF. Although we cannot conclude a causal association, the safety of insulin and alternative glucose-lowering treatments in HF needs to be evaluated in clinical trials

    A Forward Chemical Screen in Zebrafish Identifies a Retinoic Acid Derivative with Receptor Specificity

    Get PDF
    Background: Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model. Principal Findings: We synthesized novel retinoid analogues and derivatives by amide coupling, obtaining 80–92% yields. A small library of these compounds was screened for bioactivity in living zebrafish embryos. We found that several structurally related compounds significantly affect development. Distinct phenotypes are generated depending on time of exposure, and we characterize one compound (BT10) that produces specific cardiovascular defects when added 1 day post fertilization. When compared to retinoic acid (ATRA), BT10 shows similar but not identical changes in the expression pattern of embryonic genes that are known targets of the retinoid pathway. Reporter assays determined that BT10 interacts with all three RAR receptor sub-types, but has no activity for RXR receptors, at all concentrations tested. Conclusions: Our screen has identified a novel retinoid with specificity for retinoid receptors. This lead compound may be useful for manipulating components of retinoid signaling networks, and may be further derivatized for enhanced activity
    corecore