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Abstract

A new exact integral equation pertinent to the calculation of the skin effect induced internal

impedance of a straight conductor, based on the correct boundary assumptions, is derived. Applied

to a circular wire, it is shown that the exact internal impedance is persistently underestimated when

employing classical techniques such as quasi-static approximation.

1 INTRODUCTION

As a consequence of the high-frequency spectral content of present-day digital signals, the study of the

increase in internal impedance of conductors due to the skin effect has become a topic of increasing

importance in computational electromagnetics. In this contribution we derive a new exact integral equation

pertinent to the obtention of the internal impedance of a straight conductor, based on the correct boundary

assumptions, and compare it with the classical quasi-static integral equation [1]. Applied to a circular

wire, the comparison between the two integral equation formulations shows that there is a persistent

underestimation of the internal impedance at microwave frequencies.

2 SKIN-EFFECT EQUATIONS

Consider, in the case of harmonic eiωt time dependence, a uniform straight conductor with an arbitrary

cross-section R in the x, y−plane and suppose that the current density flows exclusively in the z−direction,

i.e. J = (x, y)uz. Without free internal current sources, the only current density is the one deriving from

Ohm’s law. Hence Maxwell’s equations inside R can be written as

∇× J = −iωµσH (1)

∇× H =

(

1 +
iωε

σ

)

J ≈ J (2)

where µ, σ and ε are the internal constitutive parameters. Since ∇·J = ∂/∂z = 0, we obtain the following

Helmholtz equation for  :

∇2+ k2 = 0 (3)

where

k2 = µω(ωε− iσ) (4)
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Note that, for a good conductor, we may take k2 = −iωµσ since the term ωε/σ is very small up to

microwave frequencies. E.g. for copper at 50 GHz we have ωε/σ = 4.65 10−8 � 1. The vector potential

A = a(x, y)uz outside R (free space) is given by

a(r) = −µ0

∫

R

g0(r, r
′)(r′)dS′ (5)

where the free space Green’s function is

g0(r, r
′) =

i

4
H

(2)
0 (k0|r − r

′|) (6)

and k0 = ω
√
µ0ε0 is the free space wavenumber. There are two boundary conditions at the interface of

the conductor and free space : the continuity of the tangential magnetic field Ht and the continuity of the

normal magnetic induction Bn. If H in free space is expressed in terms of a and H inside R is expressed in

terms of , and assuming that µ = µ0, i.e. there is no magnetic contrast, we have the boundary condition

∇× (uz + iωσauz) = 0 (7)

on ∂R, the boundary of R, implying [2] that

+ iωσa = constant on ∂R (8)

Now, imposing a fixed potential difference V between z = 0 and z = ` amounts to requiring

V = −
∫ `

0

∂ψ

∂z
dz = `

( 

σ
+ iωa

)

= constant on ∂R (9)

In (9), ψ stands for the scalar potential defined on the boundary as − ∂ψ
∂z

= Ez + iωa, with of course

Ez = /σ. Since the total current I =
∫

R
 d S, we obtain the following formula for the internal impedance :

zs =
V
I = `

+ iωσa

σ
∫

R
 d S

(10)

In the DC case ω = 0 we immediately obtain Pouillet’s law zs = z0 ≡ `/σS, since  is then constant over

the entire cross-section R. For ω > 0 the current crowding skin-effect occurs, as will be discussed next.

3 A SURFACE INTEGRAL EQUATION

Putting ys = 1/zs and y0 = 1/z0, we obtain the following formulation for the internal impedance. Let φ

be the solution of the Helmholtz equation

∇2φ+ k2φ = 0 in R (11)

with boundary condition

φ+ iωσa = 1 on ∂R (12)

Then the normalized internal admittance ỹs and normalized internal impedance z̃s are given by

ỹs =
1

z̃s
=
ys
y0

=
z0
zs

=
1

S

∫

R

φdS (13)



Now putting φ = 1 − iωσa + v, it is clear that v = 0 on the boundary, while satisfying

∇2v + iωσk2
0a + (k2 + iωµσ)φ = 0 (14)

inside R. This follows from the fact that

∇2
a + k2

0a = −µφ (15)

since we have

a(r) = −µ
∫

R

g0(r, r
′)φ(r′)dS′ (16)

With k2 = −iωµσ, equation (14) simplifies to

∇2v + iωσk2
0a = 0 (17)

Equation (17) can be solved by means of the Dirichlet kernel

D(r, r′) = −
∑

n

1

λn
un(r)un(r

′) (18)

where λn, un(r) are the Dirichlet eigenvalues and orthonormalized eigenfunctions for R, yielding

v(r) = −iωσk2
0

∫

R

D(r, r′)a(r′) dS′ (19)

The equation φ = 1 − iωσa + v therefore represents a surface integral equation, which can be written in

an easily understood fashion as

φ+ k2 [g0]φ+ k2k2
0 [D] [g0]φ = 1 (20)

This is the integral equation we are looking for. For an electrically small conductor, with its largest linear

dimension much smaller than the free space wavelength 2π/k0, we may tentatively take k0 = 0 in (20),

yielding the well-known quasi-static surface integral equation [1]

φ+ k2 [g00]φ = 1 (21)

where [g00] stands for the logarithmic kernel

g00(r, r
′) =

1

2π
ln |r − r

′| (22)

Of course, at microwave frequencies, it would be interesting to evaluate the difference between the internal

impedance calculated by means of the exact integral equation (20) versus the internal impedance calculated

by means of the approximate integral equation (21).

This can be done analytically in the case of a circular wire of radius a [3] where we obtain

zs = Z1(f) ≡ z0

(

kaJ0(ka)

2J1(ka)
− 1

2
iωσµa2 ln a

)

(23)

when calculated by means of the approximate equation (21). If we discard the term with the logarithm,

we obtain the classical formula [4]

zs = Z0(f) ≡ z0
kaJ0(ka)

2J1(ka)
(24)



When utilizing the exact integral equation (20), we obtain, after some tedious algebraic manipulations

zs = Z(f) ≡ kaz0
2J1(ka)

{

J0(ka) +
1

2
πωσµH

(2)
0 (k0a)

kaJ1(ka)J0(k0a) − k0aJ1(k0a)J0(ka)

k2 − k2
0

}

(25)

In Figure 1 we show the resistive part in dB of Z0(f), Z1(f) and Z(f) for a 1 m long copper wire (σ =

5.8 × 107 S m−1, ε = ε0) of diameter 2 mm as a function of frequency up to 1 GHz. It is seen that the

difference between R(f) and R0(f) = R1(f) is striking, in the sense that the resistance is underestimated

in general.
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