32 research outputs found

    Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway.

    Get PDF
    BackgroundDevelopment of neural and vascular systems displays astonishing similarities among vertebrates. This parallelism is under a precise control of complex guidance signals and neurovascular interactions. Previously, our group identified a highly conserved neural protein called thrombospondin type I domain containing 7A (THSD7A). Soluble THSD7A promoted and guided endothelial cell migration, tube formation and sprouting. In addition, we showed that thsd7a could be detected in the nervous system and was required for intersegmental vessels (ISV) patterning during zebrafish development. However, the exact origin of THSD7A and its effect on neurovascular interaction remains unclear.ResultsIn this study, we discovered that zebrafish thsd7a was expressed in the primary motor neurons. Knockdown of Thsd7a disrupted normal primary motor neuron formation and ISV sprouting in the Tg(kdr:EGFP/mnx1:TagRFP) double transgenic zebrafish. Interestingly, we found that Thsd7a morphants displayed distinct phenotypes that are very similar to the loss of Notch-delta like 4 (dll4) signaling. Transcript profiling further revealed that expression levels of notch1b and its downstream targets, vegfr2/3 and nrarpb, were down-regulated in the Thsd7a morphants. These data supported that zebrafish Thsd7a could regulate angiogenic sprouting via Notch-dll4 signaling during development.ConclusionsOur results suggested that motor neuron-derived Thsd7a plays a significant role in neurovascular interactions. Thsd7a could regulate ISV angiogenesis via Notch-dll4 signaling. Thus, Thsd7a is a potent angioneurin involved in the development of both neural and vascular systems

    Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma

    Get PDF
    Metastatic renal cell carcinoma (RCC) is highly resistant to conventional systemic treatments, including chemotherapy, radiotherapy and hormonal therapies. Previous studies have shown over-expression of EGFR is associated with high grade tumors and a worse prognosis. Recent studies suggest anticancer therapies targeting the EGFR pathway have shown promising results in clinical trials of RCC patients. Therefore, characterization of the level and localization of EGFR expression in RCC is important for target-dependent therapy. In this study, we investigated the clinical significance of cellular localization of EGFR in human normal renal cortex and RCC. RCC and adjacent normal kidney tissues of 63 patients were obtained for characterization of EGFR expression. EGFR protein expression was assessed by immunohistochemistry on a scale from 0 to 300 (percentage of positive cells × staining intensity) and Western blotting. EGFR membranous staining was significantly stronger in RCC tumors than in normal tissues (P < 0.001). In contrast, EGFR cytoplasmic staining was significantly higher in normal than in tumor tissues (P < 0.001). The levels of membranous or cytoplasmic EGFR expression in RCC tissues were not correlated with sex, tumor grade, TNM stage or overall survival (P > 0.05). These results showed abundant expression of membranous EGFR in RCC, and abundant expression of cytoplasmic EGFR in normal tissues. EGFR expression in RCC was mostly located in the cell membrane, whereas the EGFR expression in normal renal tissues was chiefly seen in cytoplasm. Our results suggest different locations of EGFR expression may be associated with human renal tumorigenesis

    Integrated Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses Triple-Negative Breast Cancer.

    Get PDF
    Funder: KCL PhD scholarshipsFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer

    Graphene oxide–based nanomaterials: An insight into retinal prosthesis

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objectives in developing biomedical applications of retinal prosthesis

    Mechanisms of Cisplatin in Combination with Repurposed Drugs against Human Endometrial Carcinoma Cells

    No full text
    Although endometrial carcinoma is one of the most common gynecological malignancies worldwide, its precise etiology remains unknown. Moreover, no novel adjuvant and/or targeted therapies are currently being developed to achieve greater efficacy for endometrial cancer patients who develop chemotherapeutic drug resistance. In this study, we used three human endometrial cancer cell lines, RL95-2, HEC-1-A, and KLE, to investigate the responsiveness of cisplatin alone and in combination with potential repurposed drugs. We first found that RL95-2 cells were more sensitive to cisplatin than HEC-1-A or KLE cells. The cytotoxicity of cisplatin in RL95-2 cells may reflect its ability to perturb the cell cycle, reactive oxygen species production and autophagy as well as to induce senescence and DNA damage. Similar effects, although not DNA damage, were also observed in HEC-1-A and KLE cells. In addition, downregulation of p53 and/or cyclin D1 may also impact the responsiveness of HEC-1-A and KLE cells to cisplatin. We also observed that resveratrol, trichostatin A (TSA), caffeine, or digoxin increased the apoptotic process of cisplatin toward RL95-2 cells, while amiodarone or TSA increased its apoptotic process toward HEC-1-A cells. The combination index supported the assertion that the combination of cisplatin with caffeine, amiodarone, resveratrol, metformin, digoxin, or TSA increases the cytotoxicity of cisplatin in HEC-1-A cells. These findings suggest potential strategies for enhancing the efficacy of cisplatin to overcome drug resistance in endometrial carcinoma patients

    The Potential Application of Spring Sargassum glaucescens Extracts in the Moisture-Retention of Keratinocytes and Dermal Fibroblast Regeneration after UVA-Irradiation

    No full text
    Sargassum glaucescens is a marine brown alga with high antioxidant activity. To evaluate the potential application of Sargassum glaucescens extracts (SGE) in skincare, we performed in vitro assays in dermal fibroblasts and epidermal keratinocytes. The antioxidant activity of SGE was confirmed by the suppression of H2O2-induced reactive oxygen species (ROS) production in dermal fibroblasts and in vitro 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity. In the wound healing assay, application of 2 mg/ml SGE stimulated the wound closure of CCD-966SK fibroblasts by a 2.95-fold in comparison to the control. Furthermore, treatment with SGE of concentrations ranging from 0.25 to 1 mg/ml promoted CCD-966SK cell regeneration after UVA irradiation. At the molecular level, 1 mg/ml SGE induced expressions of anti-oxidative genes SOD1 (Superoxide dismutase 1) and GPX1 (Glutathione peroxidase 1), and DNA repair regulatory genes XRCC1 (X-ray repair cross-complementing protein 1) and ERCC6 (Excision repair cross-complementation Group 6) in CCD-966SK cells after UVA irradiation. Therefore, SGE displayed beneficial effects on cell regeneration and the protection of dermal cells against UVA irradiation. In epidermal cells, SGE stimulated the cell proliferation of human primary epidermal keratinocytes. Application of 0.03125 mg/ml SGE induced the expressions of skin barrier-related genes TGM1 (Transglutaminase 1), KRT10 (Keratin 10) and KRT14 in keratinocytes. Meanwhile, SGE induced the gene expression of FLG (Filaggrin), which promoted the production of natural moisturizing factor (NMF) for maintaining the moisture and barrier functions of skin
    corecore