200 research outputs found

    Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing

    Get PDF
    Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Ångström exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3 % of the measured PSAP absorption for background conditions and 22 % for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of atmosphere (TOA) aerosol forcing by ∼ 20 % in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon’s forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing

    Evolution of brown carbon in wildfire plumes

    Get PDF
    Particulate brown carbon (BrC) in the atmosphere absorbs light at subvisible wavelengths and has poorly constrained but potentially large climate forcing impacts. BrC from biomass burning has virtually unknown lifecycle and atmospheric stability. Here, BrC emitted from intense wildfires was measured in plumes transported over 2 days from two main fires, during the 2013 NASA SEAC4RS mission. Concurrent measurements of organic aerosol (OA) and black carbon (BC) mass concentration, BC coating thickness, absorption Ångström exponent, and OA oxidation state reveal that the initial BrC emitted from the fires was largely unstable. Using back trajectories to estimate the transport time indicates that BrC aerosol light absorption decayed in the plumes with a half-life of 9 to 15 h, measured over day and night. Although most BrC was lost within a day, possibly through chemical loss and/or evaporation, the remaining persistent fraction likely determines the background BrC levels most relevant for climate forcing

    Observational evidence for the convective transport of dust over the central United States

    Get PDF
    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (\u3c5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude \u3e 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm \u3c diameter \u3c 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter \u3e 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm \u3c diameter \u3c 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15–300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ

    HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: : an intercomparison study

    Get PDF
    This is an Open Access article distributed under the Creative Commons Attribution 3.0 License, https://creativecommons.org/licenses/by/3.0/. © Author(s) 2017. Published by Copernicus Publications on behalf of the European Geosciences Union.We present a detailed evaluation of remotely-sensed aerosol microphysical properties obtained from an advanced, multi-wavelength High Spectral Resolution Lidar (HSRL-2) during the 2013 NASA DISCOVER-AQ field campaign. Vertically resolved retrievals of fine mode aerosol number, surface area, and volume concentration as well as aerosol effective radius are compared to 108 co-located, airborne in situ measurement profiles in the wintertime San Joaquin Valley, California, and in summertime Houston, Texas. An algorithm for relating the dry in situ aerosol properties to those obtained by the HSRL at ambient relative humidity is discussed. We show that the HSRL-2 retrievals of ambient fine mode aerosol surface area and volume concentrations agree with the in situ measurements to within 25% and 10%, respectively, once hygroscopic growth adjustments have been applied to the dry in situ data. Despite this excellent agreement for the microphysical properties, extinction and backscatter coefficients at ambient relative humidity derived from the in situ aerosol measurements using Mie theory are consistently smaller than those measured by the HSRL, with average differences of 31% 5% and 53% 11% for California and Texas, respectively. This low bias in the in situ estimates is attributed to the presence of coarse mode aerosol that are detected by HSRL-2 but that are too large to be well sampled by the in situ instrumentation. Since the retrieval of aerosol volume is most relevant to current regulatory efforts targeting fine particle mass (PM2:5), these findings highlight the advantages of an advanced 3+2 HSRL for constraining the vertical distribution of the aerosol volume or mass loading relevant for air quality.Peer reviewedFinal Published versio

    Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011

    Get PDF
    © Author(s) 2014. This open access work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/).Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.Peer reviewe

    4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Get PDF
    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements

    Quality of life impact and recovery after ureteroscopy and stent insertion: Insights from daily surveys in STENTS

    Get PDF
    BACKGROUND: Our objective was to describe day-to-day evolution and variations in patient-reported stent-associated symptoms (SAS) in the STudy to Enhance uNderstanding of sTent-associated Symptoms (STENTS), a prospective multicenter observational cohort study, using multiple instruments with conceptual overlap in various domains. METHODS: In a nested cohort of the STENTS study, the initial 40 participants having unilateral ureteroscopy (URS) and stent placement underwent daily assessment of self-reported measures using the Brief Pain Inventory short form, Patient-Reported Outcome Measurement Information System measures for pain severity and pain interference, the Urinary Score of the Ureteral Stent Symptom Questionnaire, and Symptoms of Lower Urinary Tract Dysfunction Research Network Symptom Index. Pain intensity, pain interference, urinary symptoms, and bother were obtained preoperatively, daily until stent removal, and at postoperative day (POD) 30. RESULTS: The median age was 44 years (IQR 29,58), and 53% were female. The size of the dominant stone was 7.5 mm (IQR 5,11), and 50% were located in the kidney. There was consistency among instruments assessing similar concepts. Pain intensity and urinary symptoms increased from baseline to POD 1 with apparent peaks in the first 2 days, remained elevated with stent in situ, and varied widely among individuals. Interference due to pain, and bother due to urinary symptoms, likewise demonstrated high individual variability. CONCLUSIONS: This first study investigating daily SAS allows for a more in-depth look at the lived experience after URS and the impact on quality of life. Different instruments measuring pain intensity, pain interference, and urinary symptoms produced consistent assessments of patients\u27 experiences. The overall daily stability of pain and urinary symptoms after URS was also marked by high patient-level variation, suggesting an opportunity to identify characteristics associated with severe SAS after URS
    • …
    corecore