242 research outputs found

    Downregulation of Tumor Necrosis Factor Expression in the Human Mono-Mac-6 Cell Line

    Get PDF
    Mono-Mac-6 cells, but not U937 cells, can be Induced to rapidly express tumor necrosis factor (TNF) mRNA and protein when triggered with Ilpopolysaccharlde (LPS) at 1 pg/mI. Preincubatlon of the cells for 3 d with low amounts of LPS (10 ng/mI) results In nearly complete suppression of TNF secretion. This downreguiatlon appears to occur at the pretranslational level since specIfIc mRNA is virtually undetectable under these conditions. By contrast, the same prelncubatlon with 10 ng/mI LPS results in enhanced phagocytosls (28.6-67.2% for Staphylococcus aureus), demonstrating that not all monocyte functions are suppressed. While these results show that only stringent exclusion of LPS from culture media allows for Induction of TNF In the Mono-Mac-6 cell line, the pronounced effect of LPS preincubatlon may also provide a suitable model with which to study the mechanisms of LPS-lnduced desensitizatIon

    Role of p52 (NF-κB2) in LPS tolerance in a human B cell line

    Get PDF
    Cells of the weakly CD14 positive human B cell line RPMI 8226, clone 1, will mobilize NF-κB (p50/p65 and p50/p50) proteins and produce TNF mRNA when stimulated with lipopolysaccharide (LPS), When such cells are precultured with a low amount of LPS (50 - 250 ng/ml) for 3 - 4 days followed by a secondary stimulation with a high dose of LPS (1 mu g/ml) then the cytokine expression is strongly reduced, i.e, the cells have become tolerant. Western blot analysis of proteins of the NF-kappa B/rel family demonstrates cytoplasmic p50 and p65 for naive B cells plus a low level of p52. While with tolerance induction the pattern of p50 and p65 proteins remains essentially unchanged, the LPS tolerant 8226 cells show a dramatic increase of both p52 protein and its p100 precursor in the cytosol. This p52 is found strongly upregulated in Western blots of extracts from purified nuclei of tolerant cells, Also, gelshift analysis with the -605 kappa B motif Of the human TNF 5'-region shows an additional high mobility complex in LPS tolerant cells - a complex that is supershifted with an anti-p52 antibody, Functional analysis with the -1064 TNF 5'-region in front of the luciferase reporter gene demonstrates that transactivation of the TNF promoter is strongly reduced in tolerant cells, Also, overexpression of p52 will suppress activity of TNF promoter reporter gene constructs. Taken together these data show that tolerance to LPS in the human RPM1 8226 a cell line involves upregulation of the p52 (NF-kappa B2) gene, which appears to be instrumental in the blockade of TNF gene expression

    Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation

    Get PDF
    Influenza virus infection accounts for significant morbidity and mortality world-wide. Interactions of the virus with host cells, particularly those of the macrophage lineage, are thought to contribute to various pathological changes associated with poor patient outcome. Development of new strategies to treat disease therefore requires a detailed understanding of the impact of virus infection upon cellular responses. Here we report that human blood-derived monocytes could be readily infected with the H3N2 influenza virus A/Udorn/72 (Udorn), irrespective of their phenotype (CD14++/CD16−, CD14++/CD16+ or CD14dimCD16++), as determined by multi-colour flow cytometry for viral haemagglutinin (HA) expression and cell surface markers 8–16 hours post infection. Monocytes are relatively resistant to influenza-induced cell death early in infection, as approximately 20% of cells showed influenza-induced caspase-dependent apoptosis. Infection of monocytes with Udorn also induced the release of IL-6, IL-8, TNFα and IP-10, suggesting that NS1 protein of Udorn does not (effectively) inhibit this host defence response in human monocytes. Comparative analysis of human monocyte-derived macrophages (Mph) demonstrated greater susceptibility to human influenza virus than monocytes, with the majority of both pro-inflammatory Mph1 and anti-inflammatory/regulatory Mph2 cells expressing viral HA after infection with Udorn. Influenza infection of macrophages also induced cytokine and chemokine production. However, both Mph1 and Mph2 phenotypes released comparable amounts of TNFα, IL-12p40 and IP-10 after infection with H3N2, in marked contrast to differential responses to LPS-stimulation. In addition, we found that influenza virus infection augmented the capacity of poorly phagocytic Mph1 cells to phagocytose apoptotic cells by a mechanism that was independent of either IL-10 or the Mer receptor tyrosine kinase/Protein S pathway. In summary, our data reveal that influenza virus infection of human macrophages causes functional alterations that may impact on the process of resolution of inflammation, with implications for viral clearance and lung pathology

    HDAC6 Regulates LPS-Tolerance in Astrocytes

    Get PDF
    Inflammatory tolerance is a crucial mechanism that limits inflammatory responses in order to avoid prolonged inflammation that may damage the host. Evidence that chronic inflammation contributes to the neuropathology of prevalent neurodegenerative and psychiatric diseases suggests that inflammatory tolerance mechanisms are often inadequate to control detrimental inflammation in the central nervous system. Thus, identifying mechanisms that regulate neuroinflammatory tolerance may reveal opportunities for bolstering tolerance to reduce chronic inflammation in these diseases. Examination of tolerance after repeated lipopolysaccharide (LPS) treatment of mouse primary astrocytes demonstrated that histone deacetylase (HDAC) activity promoted tolerance, opposite to the action of glycogen synthase kinase-3 (GSK3), which counteracts tolerance. HDAC6 in particular was found to be critical for tolerance induction, as its deacetylation of acetyl-tubulin was increased during LPS tolerance, this was enhanced by inhibition of GSK3, and the HDAC6 inhibitor tubacin completely blocked tolerance and the promotion of tolerance by inhibition of GSK3. These results reveal opposing interactions between HDAC6 and GSK3 in regulating tolerance, and indicate that shifting the balance between these two opposing forces on inflammatory tolerance can obliterate or enhance tolerance to LPS in astrocytes

    Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin

    Get PDF
    The recruitment of monocytes from the bloodstream is crucial in the accumulation of macrophages and dendritic cells in type 1 diabetic pancreases. Adhesion via integrins to endothelium and extracellular matrix proteins, such as fibronectin (FN), and the production of myeloid-related protein (MRP)-8, -14, and -8/14 by recently transmigrated monocytes are thought to be instrumental in such recruitment. We determined the FN-adhesive capacity and integrin expression of monocytes of type 1 and type 2 diabetic patients and related them to the subjects' serum levels of MRP-8, -14 and -8/14. Monocytes of type 1 diabetic patients displayed an increased adhesion to fibronectin in comparison with type 2 patients and healthy control subjects but had a normal expression of the FN binding integrins CD29, CD49a, CD49d, and CD49e (although CD11b and CD18 expression was increased). MRP-8/14, which was increased in the sera of type 1 diabetic patients, induced healthy donor monocytes to adhere to FN and upregulate CD11b expression in a dosage-dependent manner. The observed MRP-induced increased adhesion of monocytes to FN and upregulation of CD11b most likely contributed to a facilitated accumulation of monocytes and monocyte-derived cells at the site of inflammation, in this case the pancreatic islets

    Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients

    Get PDF
    High-grade osteosarcoma has a poor prognosis with an overall survival rate of about 60 percent. The recently closed European and American Osteosarcoma Study Group (EURAMOS)-1 trial investigates the efficacy of adjuvant chemotherapy with or without interferon-α. It is however unknown whether the interferon-signaling pathways in immune cells of osteosarcoma patients are functional. We studied the molecular and functional effects of interferon treatment on peripheral blood lymphocytes and monocytes of osteosarcoma patients, both in vivo and ex vivo. In contrast to other tumor types, in osteosarcoma, interferon signaling as determined by the phosphorylation of signal transducer and activator of transcription (STAT)1 at residue 701 was intact in immune cell subsets of 33 osteosarcoma patients as compared to 19 healthy controls. Also, cytolytic activity of interferon-α stimulated natural killer cells against allogeneic (n = 7 patients) and autologous target cells (n = 3 patients) was not impaired. Longitudinal monitoring of three osteosarcoma patients on interferon-α monotherapy revealed a relative increase in the CD16-positive subpopulation of monocytes during treatment. Since interferon signaling is intact in immune cells of osteosarcoma patients, there is a potential for indirect immunological effects of interferon-α treatment in osteosarcoma
    corecore