130 research outputs found

    Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL plus multipotent adult progenitor cell clones from peripheral blood

    Get PDF
    Background: The CD34- murine stem cell line RM26 cloned from peripheral blood mononuclear cells has been shown to generate hematopoietic progeny in lethally irradiated animals. The peripheral blood-derived cell clones expresses a variety of mesodermal and erythroid/myeloid transcription factors suggesting a multipotent differentiation potential like the bone marrow-derived `multipotent adult progenitor cells' (MAP-C). Methods: SCL+ CD34- RM26 cells were transfused intravenously into mice suffering from chronic hind-limb ischemia, evaluating the effect of stem cells on collateral artery growth and simultaneous skeletal muscle repair. Results: RM26 cells are capable of differentiating in vitro into endothelial cells when cultured on the appropriate collagen matrix. Activation of the SCL stem cell enhancer (SCL+) is mediated through the binding to two Ets and one GATA site and cells start to express milieu- and growth condition-dependent levels of the endothelial markers CD31 (PECAM) and Flt-1 (VEGF-R1). Intravenously infused RM26 cells significantly improved the collateral blood flow (arteriogenesis) and neo-angiogenesis formation in a murine hind-limb ischemia transplant model. Although transplanted RM26 cells did not integrate into the growing collateral arteries, cells were found adjacent to local arteriogenesis, but instead integrated into the ischemic skeletal muscle exclusively in the affected limb for simultaneous tissue repair. Conclusion: These data suggest that molecularly primed hem-/mesangioblast-type adult progenitor cells can circulate in the peripheral blood improving perfusion of tissues with chronic ischemia and extending beyond the vascular compartment. Copyright (C) 2004 S. Karger AG, Basel

    Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL plus multipotent adult progenitor cell clones from peripheral blood

    Get PDF
    Background: The CD34- murine stem cell line RM26 cloned from peripheral blood mononuclear cells has been shown to generate hematopoietic progeny in lethally irradiated animals. The peripheral blood-derived cell clones expresses a variety of mesodermal and erythroid/myeloid transcription factors suggesting a multipotent differentiation potential like the bone marrow-derived `multipotent adult progenitor cells' (MAP-C). Methods: SCL+ CD34- RM26 cells were transfused intravenously into mice suffering from chronic hind-limb ischemia, evaluating the effect of stem cells on collateral artery growth and simultaneous skeletal muscle repair. Results: RM26 cells are capable of differentiating in vitro into endothelial cells when cultured on the appropriate collagen matrix. Activation of the SCL stem cell enhancer (SCL+) is mediated through the binding to two Ets and one GATA site and cells start to express milieu- and growth condition-dependent levels of the endothelial markers CD31 (PECAM) and Flt-1 (VEGF-R1). Intravenously infused RM26 cells significantly improved the collateral blood flow (arteriogenesis) and neo-angiogenesis formation in a murine hind-limb ischemia transplant model. Although transplanted RM26 cells did not integrate into the growing collateral arteries, cells were found adjacent to local arteriogenesis, but instead integrated into the ischemic skeletal muscle exclusively in the affected limb for simultaneous tissue repair. Conclusion: These data suggest that molecularly primed hem-/mesangioblast-type adult progenitor cells can circulate in the peripheral blood improving perfusion of tissues with chronic ischemia and extending beyond the vascular compartment. Copyright (C) 2004 S. Karger AG, Basel

    CD34+cells augment endothelial cell differentiation of CD14+endothelial progenitor cells in vitro

    Get PDF
    Neovascularization by endothelial progenitor cells (EPC) for the treatment of ischaemic diseases has been a topic of intense research. The CD34+ cell is often designated as EPC, because it contributes to repair of ischaemic injuries through neovascularization. However, incorporation of CD34+ cells into the neovasculature is limited, suggesting another role which could be paracrine. CD14+ cells can also differentiate into endothelial cells and contribute to neovascularization. However, the low proliferative capacity of CD14+ cell-derived endothelial cells hampers their use as therapeutic cells. We made the assumption that an interaction between CD34+ and CD14+ cells augments endothelial differentiation of the CD14+ cells. In vitro, the influence of CD34+ cells on the endothelial differentiation capacity of CD14+ cells was investigated. Endothelial differentiation was analysed by expression of endothelial cell markers CD31, CD144, von Willebrand Factor and endothelial Nitric Oxide Synthase. Furthermore, we assessed proliferative capacity and endothelial cell function of the cells in culture. In monocultures, 63% of the CD14+-derived cells adopted an endothelial cell phenotype, whereas in CD34+/CD14+ co-cultures 95% of the cells showed endothelial cell differentiation. Proliferation increased up to 12% in the CD34+/CD14+ co-cultures compared to both monocultures. CD34-conditioned medium also increased endothelial differentiation of CD14+ cells. This effect was abrogated by hepatocyte growth factor neutralizing antibodies, but not by interleukin-8 and monocyte chemoattractant protein-1 neutralizing antibodies. We show that co-culturing of CD34+ and CD14+ cells results in a proliferating population of functional endothelial cells, which may be suitable for treatment of ischaemic diseases such as myocardial infarction

    Hematopoietic Stem Cells Contribute to Lymphatic Endothelium

    Get PDF
    Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications

    Bone Marrow-Derived Progenitor Cells Augment Venous Remodeling in a Mouse Dorsal Skinfold Chamber Model

    Get PDF
    The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment

    Breast tumour angiogenesis

    Get PDF
    The central importance of tumour neovascularization has been emphasized by clinical trials using antiangiogenic therapy in breast cancer. This review gives a background to breast tumour neovascularization in in situ and invasive breast cancer, outlines the mechanisms by which this is achieved and discusses the influence of the microenvironment, focusing on hypoxia. The regulation of angiogenesis and the antivascular agents that are used in an antiangiogenic dosing schedule, both novel and conventional, are also summarized

    Collateral circulation: Past and present

    Get PDF
    Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors
    corecore