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Abstract 

Critical limb ischemia (CLI) causes severe ischemic rest pain, ulcer, and gangrene in the lower limbs. In spite of angio-
plasty and surgery, CLI patients without suitable artery inflow or enough vascular bed in the lesions are often forced 
to undergo amputation of a major limb. Cell-based therapeutic angiogenesis has the potential to treat ischemic 
lesions by promoting the formation of collateral vessel networks and the vascular bed. Peripheral blood mononu-
clear cells and bone marrow-derived mononuclear cells are the most frequently employed cell types in CLI clinical 
trials. However, the clinical outcomes of cell-based therapeutic angiogenesis using these cells have not provided the 
promised benefits for CLI patients, reinforcing the need for novel cell-based therapeutic angiogenesis strategies to 
cure untreatable CLI patients. Recent studies have demonstrated the possible enhancement of therapeutic efficacy 
in ischemic diseases by preconditioned graft cells. Moreover, judging from past clinical trials, the identification of 
adequate transplant timing and responders to cell-based therapy is important for improving therapeutic outcomes 
in CLI patients in clinical settings. Thus, to establish cell-based therapeutic angiogenesis as one of the most promising 
therapeutic strategies for CLI patients, its advantages and limitations should be taken into account.
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Background
Peripheral artery disease (PAD), also called periph-
eral vascular disease, is characterized by the narrowing 
of blood vessels, which leads to impaired blood sup-
ply to the organs. PAD is caused mostly by atheroscle-
rosis obliterans (ASO) and thromboangiitis obliterans 
(TAO). Owing to changes in lifestyle, the number of 
TAO patients is decreasing, while that of ASO patients is 
increasing. Consequently, as PAD is thought to develop 
mostly from ASO, the worldwide prevalence of PAD is 
expected to increase [1].

Critical limb ischemia (CLI) is clinically defined as the 
chronic and severe stagnation of limb perfusion, its ulti-
mate outcomes being tissue ulceration and gangrene. CLI 
is commonly caused by PAD and is the disease of arteries 

of all range size. It can cause diabetic microangiopathy 
and vasculitis, and is associated with a high risk of cer-
ebro-cardiovascular events, including myocardial infarc-
tion and stroke. Accordingly, it presents poor prognosis 
and high mortality: 20% within 6 months and 50% within 
5 years of the diagnosis [2–4]. Surgical bypass and angio-
plasty for limb revascularization are the gold standards 
for CLI. However, about 20–30% of patients with CLI 
are ineligible for these therapies because of severe calci-
fication of the arteries, lack of suitable target arteries and 
vein graft, and extensive comorbidities [5, 6]. Unfortu-
nately, major limb amputation is required within 1  year 
for as many as 40% of untreatable CLI patients [3, 7]. 
Consequently, the development of alternative therapeutic 
strategies for these high-risk patients is strongly desired.

Therapeutic angiogenesis, which can be induced by 
delivery of protein(s), gene(s), or cell(s) to ischemic tis-
sues, offers the possibility of blood flow recovery in 
ischemic limbs, thus sparing CLI patients from major 
limb amputation [8, 9]. For example, gene delivery of 
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vascular endothelial growth factor (VEGF) resulted in a 
significant improvement in hemodynamics and skin ulcer 
in CLI patients, even though there was no significant 
reduction in the amputation rate after 100 days of treat-
ment [10]. This small randomized trial introduced the 
possibility of gene delivery-mediated therapeutic angio-
genesis for CLI. However, virus-mediated gene therapy 
often supplies a transient excess of pro-angiogenic factors 
to ischemic and non-ischemic tissues. This increases the 
risk of side effects such as malignant alteration of tumors 
[11]. Although rapid and remarkable advances have been 
made in gene therapy, suitable gene delivery methods 
should be developed to reduce excessive pro-angiogenic 
factors in clinical settings. In contrast, cell delivery strate-
gies, namely cell-based therapies, enable the stable supply 
of growth factors/cytokines for angiogenesis of ischemic 
tissues [12]. Particularly, the discovery of endothelial 
progenitor cells (EPCs) in bone marrow and their strong 
angiogenic potential encouraged many groups, including 
ours, to attempt cell-based therapeutic angiogenesis in 
CLI patients [13–19]. We performed the first human trial 
of transplantation of bone marrow-derived cells, also 
known as bone marrow mononuclear cells (BMMNCs), 
into CLI patients. Even though it involved only a small 
number of subjects, the procedure demonstrated the 
feasibility of cell-based therapeutic angiogenesis in CLI 
patients [20]. Thereafter, many institutions have per-
formed clinical trials using bone marrow-derived cells in 
CLI patients. In recent years, peripheral blood mononu-
clear cells (PBMNCs) have also been used for cell-based 
therapeutic angiogenesis in CLI patients. PBMNCs can 
be more easily and safely isolated from patients than 
BMMNCs, while displaying similar therapeutic efficacy 
[21]. To date, BMMNCs and PBMNCs have been imple-
mented in several trials involving CLI patients, greatly 
expanding the achievements and possibilities of cell-
based therapeutic angiogenesis [22–27]. In particular, 
these trials demonstrated the safety and feasibility of cell-
based therapeutic angiogenesis for CLI patients (Table 1). 
However, it is still unlikely that this therapeutic strategy 
will fulfill the promise of a general use in clinical settings 
because of limited therapeutic outcomes.

In this review, we focus mainly on the challenges and 
limitations of cell-based therapeutic angiogenesis raised 
by previous studies, and discuss potential therapeutic 
strategies for its clinical application in CLI.

Mechanism of cell‑based therapeutic angiogenesis
In spite of yielding promising results, the mechanism 
of cell-based therapeutic angiogenesis remains vastly 
unknown. Cell-based therapeutic angiogenesis is thought 
to depend on a combination of secreted pro-angiogenic 
factors and direct differentiation of graft into vessel cells 

[28–30]. However, recent studies have suggested that a 
direct contribution of graft cells to the neovasculariza-
tion of ischemic limbs is relatively rare. Instead, multiple 
pro-angiogenic factors secreted by graft cells are most 
likely responsible for the efficacy of therapeutic neovas-
cularization [31–33].

VEGF, a dimeric glycoprotein of ~45 kDa, is an early pro-
angiogenic factor in therapeutic angiogenesis [34]. VEGF 
binds to the FLT-1 and FLK-1 receptors on endothelial 
cells (ECs), activating their intracellular tyrosine kinases. 
This triggers phosphoinositide-3-kinase/Akt, and mitogen-
activated protein kinase signaling pathways, promoting EC 
proliferation, migration, and survival [35, 36]. VEGF-A165, a 
VEGF isoform, binds also to the co-receptor neuropilin-1. 
In an initial clinical trial, in which the VEGF gene was deliv-
ered on a plasmid, the collateral formation of blood vessels 
was effectively induced in ischemic limbs [37].

Basic fibroblast growth factor (bFGF) is also a promis-
ing pro-angiogenic factor for therapeutic angiogenesis in 
CLI patients [9, 38]. The mechanism of action of bFGF in 
angiogenesis can be explained by the direct effect of FGF 
receptors on EC proliferation and migration [8]. Interest-
ingly, bFGF contributes to angiogenesis in synergy with 
VEGF. A combination therapy with congenial pro-angio-
genic factors represents a possible strategy for enhancing 
the effect of therapeutic angiogenesis in CLI patients [39].

Hepatocyte growth factor (HGF) also possesses angio-
genic activity, which is exerted through phosphoryla-
tion of the tyrosine kinase of its specific receptor, c-Met, 
stimulating the motility and growth of ECs [40]. As with 
VEGF, direct delivery of HGF using plasmids has been 
tested on CLI patients in several clinical trials, demon-
strating its safety and potential benefits during the early 
phase [41, 42].

Although the aforementioned pro-angiogenic fac-
tors act mainly on the motility of ECs to initiate vascu-
lar structures, it is thought that functional maturation of 
new vessels is required for the suitable recovery of blood 
flow in CLI patients. Platelet-derived growth factor-BB 
(PDGF-BB) recruits mural cells, also known as pericytes, 
and induces maturation of newly formed vessels [43]. 
Accordingly, a combination of cell-based therapeutic 
angiogenesis and PDGF-BB could represent an effective 
strategy for CLI patients.

Source of graft cells for therapeutic angiogenesis
For example, mesenchymal stem cells (MSCs) and adi-
pose-derived stem cells (ADSCs) are potential thera-
peutic sources of neovascularization because of their 
utilities in addition to angiogenic activity. Particularly, 
immune-privilege of MSCs has been paid attention 
for autologous transplantation [44]. However, it is still 
controversial which cell types are best for cell-based 
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Table 1 Clinical trials using BMMNCs and PBMNCs for CLI patients

Author Year Cell type Target 
disease

Delivery Study  
population

Outcome Follow-up References

Esato et al. 2002 BMMNC CLI IM 8 ↑Symptom, ↑thermography, 
complete ulcer healing; 2/3 
(67%) major amputation 
rates; 0

Not determined [20]

Tateishi-Yuyama 
et al.

2002 BMMNC and 
PBMNC

CLI IM 45 ↑Symptom, ↑ABI, ↑TcPO2, 
complete ulcer healing; 6/10 
(60%) major amputation rates; 
not shown

4 and 24 weeks [25]

Huang et al. 2005 PBMNC CLI IM 28 ↑Symptom, ↑ABI, ↑LDP, 
complete ulcer healing; 14/18 
(78%) major amputation 
rates; 0

3 months [88]

Lenk et al. 2005 PBMNC CLI IA 7 ↑Symptom, ↑ABI, ↑TcPO2, com-
plete ulcer healing; not shown 
major amputation rates; 0

20 weeks [89]

Miyamoto et al. 2006 BMMNC CLI IM 8 ↑Symptom, no ∆ ABI, complete 
ulcer healing; 7/8 (88%) major 
amputation rates; 0

684 days [81]

Durdu et al. 2006 BMMNC CLI IM 28 ↑Symptom, ↑ABI, ↑LDP, 
complete ulcer healing; 15/18 
(83%) major amputation 
rates; 0

16.6 months [79]

Arai et al. 2006 BMMNC CLI IM 39 ↑Symptom, ↑ABI, ↑TcPO2, 
complete ulcer healing; 3/8 
(38%) major amputation rates; 
not shown

1 months [90]

Kawamoto et al. 2009 PBMNC 
(CD34+)

CLI IM 17 ↑Symptom, ↑TBI, ↑TcPO2, no ∆ 
ABI, complete ulcer healing; 
not shown major amputation 
rates; 0

3 months [91]

Prochazka et al. 2010 BMC CLI IM 96 ↑Symptom, ↑ABI, ↑LDP, ↑SPP, 
no ∆ TcPO2, complete ulcer 
healing; 33/42 (79%) major 
amputation rates; 9/42 (21%)

4 months [92]

Murphy et al. 2011 BMMNC CLI IM 29 ↑Symptom, ↑FTP, ↑TBI, com-
plete ulcer healing; 3/9 (33%) 
major amputation rates; 4/29 
(14%)

12 months [93]

Walter et al. 2011 BMMNC CLI IA 40 ↑Symptom, no ∆ ABI, no ∆ 
TcPO2, complete ulcer healing; 
3/15 (20%) major amputation 
rates; 3/19 (16%)

3 months [78]

Losordo et al. 2012 PBMNC 
(CD34+)

CLI IM 28 No ∆ symptom, no ∆ ABI, no ∆ 
TBI, complete ulcer healing; 
2/5 (40%) major amputation 
rates; 5/16 (31%)

12 months [94]

Tanaka et al. 2014 PBMNC 
(CD34+)

CLI IM 5 ↑Symptom, ↑SPP, ↑TcPO2, no 
∆ ABI, complete ulcer healing; 
2/5 (40%) major amputation 
rates; 0

5 months [95]

Teraa et al. 2015 BMMNC CLI IA 160 ↑Symptom, ↑ABI, ↑TcPO2, 
complete ulcer healing; 19/51 
(37%) major amputation rates; 
21/81 (26%)

9 months [96]

BMMNC bone marrow derived mononuclear cell, PBMNC peripheral blood mononuclear cell, BMC bone marrow cell, CLI critical limb ischemia, IM intramuscular, 
IA intraarterial, ↑ improved, ∆ change, ABI ankle brachial pressure index, TcPO2 transcutaneous oxygen pressure, SPP skin perfusion pressure, LDP laser Doppler 
perfusion, TBI toe brachial pressure index, FTP first toe pressure
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therapeutic angiogenesis in CLI patients. After investi-
gating the therapeutic efficacy of various cell types in ani-
mal models and patients, mononuclear cells from bone 
marrow and peripheral blood (e.g., BMMNCs and PBM-
NCs) appear to be the most realistic choice in clinical 
settings. Common characteristics of these cell types are 
the presence of EPCs and the ability to secrete various 
pro-angiogenic factors. Although cellular heterogene-
ity and differentiation capacity vary between BMMNCs 
and PBMNCs, their clinical outcomes are not signifi-
cantly different [21, 45, 46]. In fact, the major difference 
between these cells is represented by their invasiveness 
and isolation procedure. BMMNCs are collected from 
the iliac bone under general anesthesia, whereas PBM-
NCs are obtained from peripheral blood by leukapheresis 
without anesthesia. Minimal invasiveness and absence of 
anesthesia are required for high-risk CLI patients. There-
fore, PBMNCs might be more suitable than BMMNCs 
for cell-based therapeutic angiogenesis in CLI patients, 
particularly given that the therapeutic effect is similar 
[21].

Problems of cell‑based therapeutic angiogenesis
Poor graft cell survival remains an unsolved problem for 
cell-based therapies in ischemic diseases. Reduced oxy-
gen supply and high levels of inflammatory cytokines in 
ischemic tissues cause excessive production and conse-
quent accumulation of reactive oxygen species, result-
ing in the death of graft cells [47, 48]. Declining cellular 
activities in elder patients may also contribute to reduced 
graft survival in ischemic tissues [49–52]. Therefore, to 
be effective, cell-based therapies should enhance toler-
ance against oxidative stress and the angiogenic potential 
of graft cells.

Another important problem in cell-based therapeutic 
angiogenesis is the maturation of newly formed vessels. 
These must be fully functional to supply sufficient blood 
flow to meet the oxygen and metabolic needs of ischemic 
tissues. However, newly formed vessels generated by cell 
transplantation are often immature, even if their num-
ber is generally sufficient [53]. Therefore, in addition 
to increasing the number of vessels, novel therapeutic 
strategies should also stimulate their maturation during 
neovascularization.

Hypoxic pretreatment of graft cells to augment 
therapeutic potential
To enhance the efficacy of cell-based therapeutic angio-
genesis, several approaches have been developed and 
tested in pre-clinical studies [54–56]. To this end, we 
and others have developed a “hypoxic preconditioning” 
method, whereby graft cells are incubated for a short 
time in low oxygen prior to cell transplantation.

Hypoxic preconditioning enhances VEGF produc-
tion of mononuclear cells (MNCs) and EPCs, resulting 
in successful neovascularization in a rodent hind limb 
ischemia model [15, 57, 58]. In addition to angiogenic 
activity, hypoxic preconditioning affects also resist-
ance to oxidative stress and adhesion of graft cells to 
ischemic tissues [59–62]. Such increases in cellular 
function in preconditioned cells result from upregula-
tion of multiple gene sets associated with cell adhesion, 
stress resistance, and anti-apoptosis (Fig.  1). Interest-
ingly, hypoxic preconditioning affects neovasculariza-
tion even in MNCs of aged mice [63], suggesting that 
this method can, at least in part, reinforce “function-
ally-declined” MNCs. Moreover, hypoxic precondition-
ing augments the cellular functions of other cell types, 
including mesenchymal stem cells and engineered cell 
sheets [64, 65]. Taken together, given its simplicity and 
versatility, hypoxic preconditioning is one of most feasi-
ble “boosters” of cell-based therapy.

Because hypoxic preconditioning is a simple but pow-
erful method to enhance multiple cellular functions of 
MNCs, it can satisfy the need for therapeutic efficacy 
and rapidity strongly required in clinical settings. We 
have recently started a clinical trial using hypoxic pre-
conditioning whereby autologous PBMNCs were trans-
planted into ischemic limbs of CLI patients. A CLI 
patient treated with preconditioned PBMNCs was thus 
relieved of severe ischemic pain and showed increased 
blood flow in the ischemic limb (unpublished prelimi-
nary results). Briefly, the patient was categorized as 
Rutherford class 6 and had undergone amputation of the 
Lisfranc because of remaining foot gangrene following 
several angioplasties. In spite of the initial amputation, 
strong ischemic pain and progressive necrosis remained 
in the foot. In the present trial, we aimed to release rest 
pain and stop the worsening of necrosis, in addition to 
checking the safety of this therapeutic approach. As a 
result, the patient, who was injected with 5.4 × 108 pre-
conditioned PBMNCs into the ischemic leg, was released 
from rest pain. Skin perfusion pressure increased (from 
27 to 59  mmHg) and there were no adverse events. 
However, the CLI patient, who injected cells, had to be 
re-amputated above the ankle a month after cell trans-
plantation because of uncontrollable necrosis and infec-
tion of the gangrenous foot (Fig. 2).

Consistent with this study, some trials have reported 
that the therapeutic effects of cell-based therapies were 
not as expected in CLI patients with diabetes mellitus, 
hemodialysis, and advanced Rutherford class 6 [66–68]. 
Therefore, it is important to determine the correct indi-
cation and adequate timing of cell-based therapies. In 
addition, we believe that a more powerful therapeutic 
strategy is necessary for high-risk patients.
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Combination therapy to induce new vessels and their 
maturation
Evidence from preclinical studies using multi-growth fac-
tors supports the notion that a combination of induction 
and maturation of new vessels improves functional out-
comes of therapeutic angiogenesis even in CLI patients 
[39, 69–72]. As mentioned previously, cell-based therapy 
is a promising strategy to induce new vessels in ischemic 
tissues, including CLI, and hypoxic preconditioning is a 
possible booster to enhance therapeutic angiogenesis. 
Therefore, a combination of cell transplantation that 
includes hypoxic preconditioning, and the use of ves-
sel maturation-associated factors might provide a novel 
effective therapeutic strategy for CLI.

Angiopoietin-1 (Ang-1) and apelin are well known 
as vessel maturation-associated factors. Apelin, which 
is an endogenous ligand for the APJ receptor, regulates 
caliber size and stabilization of blood vessels; whereas 
Ang-1 contributes to EC migration during vessel mat-
uration [73–76]. Recently, we investigated whether a 
combination of preconditioned cell transplantation 
and apelin administration could represent an effective 
therapeutic strategy for CLI. We found that hypoxic 
preconditioning enhanced the sensitivity of PBMNCs to 
apelin through upregulation of the APJ receptor, thereby 
resulting in increased PDGF-BB secretion. At the same 

time, apelin directly regulated proliferation and migra-
tion of vascular smooth muscle cells in ischemic blood 
vessels through induction of PDGF receptor-β (Fig. 3). 
Thus, a combination of preconditioned cell transplan-
tation and apelin administration induced functionally 
matured new vessels and dramatically improved blood 
flow to the ischemic hind limbs in CLI animal models 
[53]. Our findings raise the possibility that cell-based 
therapeutic angiogenesis may benefit from the com-
bined administration of vessel maturation-associated 
factors.

Possible targets of cell‑based therapeutic 
angiogenesis in CLI
Some clinical trials show discrepancies in the therapeutic 
outcomes of cell-based therapeutic angiogenesis among 
CLI patients. For example, the therapeutic angiogen-
esis using cell transplantation (TACT) trial, which was 
performed in patients with TAO using BMMNCs, dem-
onstrated long-term safety and a higher therapeutic effi-
cacy than in ASO patients [77]. Similarly, the PROVASA 
(intraarterial progenitor cell transplantation of bone mar-
row mononuclear cells for induction of neovasculariza-
tion in patients with peripheral arterial occlusive disease) 
trial indicated greater overall therapeutic benefits in 
TAO compared with atherosclerotic CLI patients [78]. 

Fig. 1 Schematic representation of hypoxic preconditioning of peripheral blood mononuclear cells (PBMNCs). Hypoxic preconditioning of PBMNCs 
at 2% O2 and 33 °C for 24 h. Cell retention, cell survival, and angiogenic potency are increased by this simple method, improving efficacy of cell-
based therapy in ischemic conditions
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Moreover, other trials have also demonstrated a more 
efficient outcome of cell-based therapeutic angiogenesis 
in TAO than in ASO patients [79–82]. Such clinical evi-
dence suggests that some targets may be more appropri-
ate than others, although it remains to be determined 
why cell-based therapeutic angiogenesis is more effec-
tive in TAO than in ASO patients. Given that TAO is 
defined as a non-atherosclerotic and inflammatory dis-
ease, whereas ASO is associated with atherosclerosis and 
advanced age [49, 50, 83], these pathologies might deter-
mine the outcomes of cell-based therapeutic angiogen-
esis in CLI patients. Accordingly, we may be able to find 
targets other than TAO for effective cell-based therapeu-
tic angiogenesis in CLI patients.

Similar pathological characteristics, ranging from 
inflammation of small- and middle-size arteries to TAO, 
are observed also in patients with collagen vascular dis-
eases (CVDs). It is thought that auto-immune disorders 
are underlying diseases commonly associated with both 
TAO and CVD. Patients with CVD present symptoms 
of vasculitis and occlusion of microvessels, resulting in 
rest pain, skin ulcer, and gangrene in the limbs. In spite 
of many attempts to find a cure, there are no effective 
drugs against CVD. Given the absence of a vascular bed 
in microcirculatory systems of the extremities, surgi-
cal treatments including bypass surgery do not provide 
adequate blood flow to ischemic limbs for long periods of 
time [84]. If cell transplantation could provide a vascular 

Fig. 2 A patient with right foot atherosclerotic gangrene after injection of preconditioned cells. a The angiography revealed a poor vascular bed 
in the right foot (circle). b Location of the gangrene-infected amputation site of the Lisfranc in the right foot. Skin perfusion pressure (SPP) was 
27 mm Hg pre-treatment. c Hypoxic preconditioned peripheral blood mononuclear cells were transplanted into 54 points (1 × 107/0.1 mL/point) in 
ischemic tissue (5.4 × 108 cells). d SPP increased to 59 mmHg 7 days after treatment, however necrosis and infection gradually worsened
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bed in ischemic limbs, then cell-based therapeutic angi-
ogenesis would be a reasonable therapeutic strategy for 
untreatable CVD patients. A possible application of cell-
based therapeutic angiogenesis for patients with CVD 
has been reported in some clinical trials [85–87]. Taken 
together, cell-based therapeutic angiogenesis could 
become a powerful tool in CLI with inflammation and 
a poor vascular bed. However, further investigation is 
required to ensure this therapeutic approach is translated 
into the right practical applications.

Conclusion
Efficacy and safety of cell-based therapeutic angiogen-
esis have been demonstrated in many clinical trials. 
However, therapeutic outcomes are still limited and fur-
ther improvements are required for extensive clinical 
applications. For example, hypoxic preconditioning of 
graft cells and its combination with other strategies are 
some of the options for enhancing efficacy of cell-based 
therapeutic angiogenesis. Also, absence of necrosis and 
infection at the time of cell injection, and an appropri-
ate selection of target diseases, such as TAO and vas-
cular diseases caused by auto-immune disorders, should 
be considered when translating this approach to clinical 
settings.
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