6 research outputs found

    Effect of sorghum seed treatment in Burkina Faso varies with baseline crop performance and geographical location

    Get PDF
    Sorghum [Sorghum bicolor (L.) Moench] is a major subsistence crop throughout the region of Sahel. With the exception of seeds and labour, no agricultural inputs are in general used in sorghum production since the grain is of a relatively low commercial value and the risk of losing the crop to drought, flooding, etc. is substantial. A meta-analysis of 118 field experiments was carried out to identify conditions in which two protective seed treatments could support a yield increase of sorghum in Burkina Faso. The two treatments were: i) treatment with the pesticide Calthio C (thiram and chlorpyrifos) and ii) treatment with an aqueous extract from the plant clipta alba. Both treatments were found to produce a yield increase (Medians: Calthio C +199 kg ha-1, P<2x10-9; E. alba +90.5 kg ha-1 P<4x10-4). A strong relative effect of Calthio C on yield (+36%) was found for field experiments with a low baseline yield. A strong relative effect of E. alba extract on yield (+22%) was found for experiments with a low baseline of emergence. ANOVA of the 118 field tests showed that baseline crop performance (yield and emergence) and the effect of seed treatments were strongly linked to geographical location (twelve different villages included). Roots from sorghum in the village showing the strongest effect of both seed treatments (>40% yield increase) were found to carry a comparatively high load of the infectious ascomycetes: Fusarium equiseti, Macrophomina phaseolina and Curvularia lunata.Key Words: Curvularia lunata, Fusarium equiseti, Macrophomina phaseolina, Sorghum bicolo

    Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor

    No full text
    The diversity of fungal endophytes in Sorghum bicolor was investigated in samples collected from 10 different geographical regions of Karnataka state, India. A total of 360 endophytes were isolated from leaf, stem, and root tissues and were assigned to 26 fungal species based on morphology and molecular characterization using ITS sequences. All the endophytes belonged to the phylum Ascomycota. The diversity (Shannon H, 2.57; Simpson_1-D, 0.92) and species richness (Margalef's, 4.68; Menhinick, 3.61) were found to be higher for the endophytes isolated from leaf tissues. The species evenness of the endophytic assemblage was strongly influenced by tissue type, followed by geographical location. The biocontrol potential of isolated endophytes was evaluated against economically destructive sorghum grain mould pathogens such as Fusarium thapsinum, Epicoccum sorghinum, Alternaria alternata, and Curvularia lunata using the dual culture method. Biocontrol potential was exhibited by 26 endophytic isolates, of which Trichoderma asperellum recorded broad-spectrum activity against target pathogens, followed by E. nigrum and A. longipes. Most (82%) endophytes showed plant growth-promoting traits. Biosynthesis of indole-3-acetic acid (IAA) was observed in 84% of isolates, and phosphate solubilization, siderophore production, and cellulase activity was observed in 69%, 23%, and 27% of isolates, respectively. Seeds treated with T. asperellum exhibited a significantly higher seed vigour index (2096), germination percentage (94%), and yield under greenhouse and field conditions. The results were substantiated by the confocal microscopy analysis, which clearly demonstrated the colonization of treated endophyte in root tissues. The present study reveals an ecofriendly approach to explore T. asperellum in sorghum disease management
    corecore