83 research outputs found

    PeP: a Point enhanced Painting method for unified point cloud tasks

    Full text link
    Point encoder is of vital importance for point cloud recognition. As the very beginning step of whole model pipeline, adding features from diverse sources and providing stronger feature encoding mechanism would provide better input for downstream modules. In our work, we proposed a novel PeP module to tackle above issue. PeP contains two main parts, a refined point painting method and a LM-based point encoder. Experiments results on the nuScenes and KITTI datasets validate the superior performance of our PeP. The advantages leads to strong performance on both semantic segmentation and object detection, in both lidar and multi-modal settings. Notably, our PeP module is model agnostic and plug-and-play. Our code will be publicly available soon

    New Insight into the Anti-liver Fibrosis Effect of Multitargeted Tyrosine Kinase Inhibitors: From Molecular Target to Clinical Trials

    Get PDF
    Tyrosine kinases (TKs) is a family of tyrosine protein kinases with important functions in the regulation of a broad variety of physiological cell processes. Overactivity of TK disturbs cellular homeostasis and has been linked to the development of certain diseases, including various fibrotic diseases. In regard to liver fibrosis, several TKs, such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR) kinases, have been identified as central mediators in collagen production and potential targets for anti-liver fibrosis therapies. Given the essential role of TKs during liver fibrogenesis, multitargeted inhibitors of aberrant TK activity, including sorafenib, erlotinib, imatinib, sunitinib, nilotinib, brivanib and vatalanib, have been shown to have potential for treating liver fibrosis. Beneficial effects are observed by researchers of this field using these multitargeted TK inhibitors in preclinical animal models and in patients with liver fibrosis. The present review will briefly summarize the anti-liver fibrosis effects of multitargeted TK inhibitors and molecular mechanisms

    Experimental Study on the Road Performance of High Content of Phosphogypsum in the Lime–Fly Ash Mixture

    Get PDF
    Phosphogypsum (PG), as a by-product of the production of phosphoric acid, faces the problems of large annual output and difficult treatment. There is a large demand for fillers in the process of road paving, which may be an effective method for the utilization of PG resources. In this study, three proportions of phosphogypsum–lime–fly ash (PLF) mixture were designed, first, according to orthogonal tests. The comprehensive performance of the PLF mixture was tested by the compression rebound modulus test, unconfined compressive strength test, flexural tensile strength test, dry shrinkage test, and temperature shrinkage test, respectively. The results show that adding crushed stone to the PLF mixture can effectively improve the compression rebound modulus, unconfined compressive strength, and flexural tensile strength. The high content of PG in the mixture can also improve the dry shrinkage and temperature shrinkage properties of the mixture. According to the road layer requirements, the optimum proportion of the PLF mixture is recommended, which may benefit the road construction and PG resources

    Thiabendazole Inhibits Glioblastoma Cell Proliferation and Invasion Targeting Mini-chromosome Maintenance Protein 2

    Get PDF
    Thiabendazole (TBZ), approved by the US Food and Drug Administration (FDA) for human oral use, elicits a potential anticancer activity on cancer cells in vitro and in animal models. Here, we evaluated the efficacy of TBZ in the treatment of human glioblastoma multiforme (GBM). TBZ reduced the viability of GBM cells (P3, U251, LN229, A172, and U118MG) relative to controls in a dose- and time-dependent manner. However, normal human astrocytes (NHA) exhibited a greater IC50 than tumor cell lines and were thus more resistant to its cytotoxic effects. 5-Ethynyl-2′-deoxyuridine (EdU)-positive cells and the number of colonies formed were decreased in TBZ-treated cells (at 150 μM, P < 0.05 and at 150 μM, P < 0.001, respectively). This decrease in proliferation was associated with a G2/M arrest as assessed with flow cytometry, and the downregulation of G2/M check point proteins. In addition, TBZ suppressed GBM cell invasion. Analysis of RNA sequencing data comparing TBZ-treated cells with controls yielded a group of differentially expressed genes, the functions of which were associated with the cell cycle and DNA replication. The most significantly downregulated gene in TBZ-treated cells was mini-chromosome maintenance protein 2 (MCM2). SiRNA knockdown of MCM2 inhibited proliferation, causing a G2/M arrest in GBM cell lines and suppressed invasion. Taken together, our results demonstrated that TBZ inhibited proliferation and invasion in GBM cells through targeting of MCM2.publishedVersio

    Experimental study on gas and coal dust explosive overpressure and flame dynamic characteristics in an engineering-level test roadway

    Get PDF
    The continuous development of coal science and technology has made gas and coal dust explosion disasters an important factor that restricts efficient and intelligent coal mining, which seriously threatens the safe production process of coal mines. To explore the gas and coal dust explosive overpressure and flame propagation characteristics in an actual roadway, the dynamic characteristics of gas and coal dust mixed explosion propagation and evolution laws of explosion flames were investigated using an integrated explosion test system and a high-speed image acquisition system in an engineering-level test roadway with a length of about 700 m and a cross-sectional area of 7.2 m2. Experimental results showed that the peak overpressure measured at each measuring point during the propagation process of explosion shock wave in the roadway did not rise or fall monotonously but fluctuated. The power of explosion shock wave was significantly strengthened by adding coal dust, while the flame propagation speed sharply increased in a certain zone, which generally showed a first increasing and then declining trend. In addition, the flame was blue white after the gas in the roadway was ignited, developed in an irregular shape, and ignited the surrounding combustible gas soon, which further ignited the coal dust under the combined action of pressure wave and flame front. In this case, the flame was deep yellow on the whole. The gas and coal dust explosion flame propagated along the longitudinal section above the roadway, and the flame propagated at an accelerated speed on the transverse section due to the disturbance of obstacles. The study results will provide an important theoretical basis for the R&amp;D of technical active explosion suppression equipment in coal mines and the improvement in their installation technologies

    Identification of immune-related genes contributing to the development of glioblastoma using weighted gene co-expression network analysis

    Get PDF
    Background: The tumor microenvironment (TME) of human glioblastoma (GBM) exhibits considerable immune cell infiltration, and such cell types have been shown to be widely involved in the development of GBM. Here, weighted correlation network analysis (WGCNA) was performed on publicly available datasets to identify immune-related molecules that may contribute to the progression of GBM and thus be exploited as potential therapeutic targets. Methods: WGCNA was used to identify highly correlated gene clusters in Chinese Glioma Genome Atlas glioma dataset. Immune-related genes in significant modules were subsequently validated in the Cancer Genome Atlas (TCGA) and Rembrandt databases, and impact on GBM development was examined in migration and vascular mimicry assays in vitro and in an orthotopic xenograft model (GL261 luciferase-GFP cells) in mice. Results: WGCNA yielded 14 significant modules, one of which (black) contained genes involved in immune response and extracellular matrix formation. The intersection of these genes with a GO immune-related gene set yielded 47 immune-related genes, five of which exhibited increased expression and association with worse prognosis in GBM. One of these genes, TREM1, was highly expressed in areas of pseudopalisading cells around necrosis and associated with other proteins induced in angiogenesis/hypoxia. In macrophages induced from THP1 cells, TREM1 expression levels were increased under hypoxic conditions and associated with markers of macrophage M2 polarization. TREM1 siRNA knockdown in induced macrophages reduced their ability to promote migration and vascular mimicry in GBM cells in vitro, and treatment of mice with LP-17 peptide, which blocks TREM1, inhibited growth of GL261 orthotopic xenografts. Finally, blocking the cytokine receptor for CSF1 in induced macrophages also impeded their potential to promote tumor migration and vascular mimicry in GBM cells. Conclusions: Our results demonstrated that TREM1 could be used as a novel immunotherapy target for glioma patients.publishedVersio

    Preparation of Decachlorocorannulene and Other Perchlorinated Fragments of Fullerenes by Electrical Discharge in Liquid Chloroform

    Get PDF
    地址: 1. XIAMEN UNIV, DEPT CHEM, STATE KEY LAB PHYS CHEM SOLID SURFACE, XIAMEN 361005, FUJIAN PEOPLES R CHIN

    Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines

    Get PDF
    Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZ1 was associated with increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly available database The Cancer Genome Atlas (P < 0.001). Protein levels of COPZ1 were significantly increased in GBM compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SiRNA knockdown of COPZ1 suppressed proliferation of U87MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P < 0.001). Kaplan–Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from 20.8 days (control) to 27.8 days (knockdown, P < 0.05). COPZ1 knockdown also led to the increase in nuclear receptor coactivator 4 (NCOA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. These data demonstrate that COPZ1 is a critical mediator in iron metabolism. The COPZ1/NCOA4/FTH1 axis is therefore a novel therapeutic target for the treatment of human GBM.publishedVersio
    corecore