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Tyrosine kinases (TKs) is a family of tyrosine protein kinases with important functions
in the regulation of a broad variety of physiological cell processes. Overactivity of
TK disturbs cellular homeostasis and has been linked to the development of certain
diseases, including various fibrotic diseases. In regard to liver fibrosis, several TKs, such
as vascular endothelial growth factor receptor, platelet-derived growth factor receptor,
fibroblast growth factor receptor, and epidermal growth factor receptor kinases, have
been identified as central mediators in collagen production and potential targets for
anti-liver fibrosis therapies. Given the essential role of TKs during liver fibrogenesis,
multitargeted inhibitors of aberrant TK activity, including sorafenib, erlotinib, imatinib,
sunitinib, nilotinib, brivanib and vatalanib, have been shown to have potential for treating
liver fibrosis. Beneficial effects are observed by researchers of this field using these
multitargeted TK inhibitors in preclinical animal models and in patients with liver fibrosis.
The present review will briefly summarize the anti-liver fibrosis effects of multitargeted
TK inhibitors and molecular mechanisms.
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INTRODUCTION

Liver fibrosis is a chronic medical condition in which the normal liver architecture is
replaced by fibrous tissue, scar and regenerative nodules leading to loss of liver function
due to various etiologies including infection, drug, cholestasis, metabolic disorder, or immune
attack (Hernandez-Gea and Friedman, 2011). Liver fibrosis affects 100s of millions of patients
worldwide, which ultimately resulting in cirrhosis, hepatocellular carcinoma (HCC), or even
death. Although liver fibrosis is generally recognized being potentially reversible and a number
of therapies have been investigated in animal models, those diverse anti-fibrotic therapies are
not seemingly effective from bench to bedside. Till date, treatment of liver fibrosis depends
upon the stage of the disease, and liver transplantation is the only curative therapy for end
stage of liver cirrhosis (Adam and Hoti, 2009). A thorough understanding of the underlying
mechanism is critical for developing effective therapeutic approach for cirrhotic patients.
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TYROSINE KINASES INVOLVED IN LIVER
FIBROGENESIS

Grateful thanks to the decades of relevant experiments and
researches, a numerous molecules and signaling pathways
involved in the liver fibrogenesis were unveiled and
corresponding therapeutics were taken root (Friedman,
2008). Among them, a family of proteins called tyrosine
kinases (TKs) are found to be involved in this process. TKs
can be divided into two subgroups, receptor tyrosine kinases
(RTKs) and non-receptor tyrosine kinases (nRTKs). RTKs
include vascular endothelial growth factor receptor (VEGFR),
platelet-derived growth factor receptor (PDGFR), fibroblast
growth factor receptor (FGFR), and epidermal growth factor
receptor (EGFR) kinases. Meanwhile, nRTKs include c-Abl and
Src kinases. Both RTKs and nRTKs are found to be essential
for cellular signal transduction networks (Xu and Huang,
2010).

The RTKs are membrane receptors that activate intracellular
signaling pathways upon ligand binding to their extracellular
domains. These receptors are single-transmembrane proteins
comprising an extracellular ligand-binding domain and a
linked cytoplasmically oriented, catalytic domain (Almendro
et al., 2010). The activation process of RTKs is triggered
by the dimerisation of two RTK monomers as well as
autophosphorylation of the intracellular phosphatase domain
to increase the catalytic activity, which consequently generates
a biochemical message and activates intracellular signaling
pathways.

In contrast to RTKs, nRTKs (Src, c-Abl, and RhoA) lack
extracellular and transmembrane domains, and only include
a catalytic domain and a regulatory domain (Arora and
Scholar, 2005; Zander and Hallek, 2011). nRTKs modulate
signaling pathways after activation in the cytoplasm use different
regulatory mechanisms. Additionally, it is also found that nRTKs
can be activated by RTKs (Figure 1). The interaction between
RTKs and nRTKs therefore contribute together to modulate
cellular differentiation and proliferation.

Tyrosine Kinases as Modulators of
Hepatic Stellate Cells Activation
It’s widely accepted that a hallmark of liver fibrogenesis is
the transdifferentiation of resting hepatic stellate cells (HSCs)
into a myofibroblastic cell type. It was found that many TKs
were expressed in activated HSCs. Moreover, the expression of
several TKs, especially PDGFR (Heldin, 2014), VEGFR (Yoshiji
et al., 2003), and EGFR (Fuchs et al., 2014), were significantly
increased during the course of liver fibrosis development. Because
of the critical roles in key signal transduction, TKs therefore
harbor a mitogenic potential, which when activated, result in
the transformation of resting HSCs to active HSCs. As shown
in Figure 1, multiple downstream signaling pathways, such as
MEK/ERK and PI3K/Akt pathways, are found to be activated
by TKs during HSC activation. Many TK targeting agents
exhibit significant inhibitory effects on chemotaxis, activation
and collagen synthesis pathways in HSCs.

Tyrosine Kinases as Modulators of
Intrahepatic Angiogenesis
Alterations in the hepatic vasculature are also defined as a
crucial component during liver fibrogenesis. Established evidence
clearly indicates that microvascular abnormalities promotes
portal hypertension and liver fibrosis progression (Medina et al.,
2004; Thabut and Shah, 2010). In parallel with capillarization
of hepatic sinusoids, intrahepatic angiogenesis giving rise to
shunts between pre- and post- sinusoidal vessels would lead
to increased portal vascular resistance and decreased effective
hepatocyte perfusion (Yoshiji et al., 2003). To date, many TKs
have been identified joining in angiogenesis during liver fibrosis
progression. Among these, VEGFRs are the most potent in the
angiogenesis process (Figure 1). VEGFR expression significantly
increased during the course of liver fibrosis development in
experimental studies (Yan et al., 2015). Anti-VEGFR treatment
using either antibodies (Yoshiji et al., 2003) or agents (Yang
et al., 2014) significantly attenuates liver fibrosis progression.
Additionally, PDGFRs were also considered as proangiogenic
molecules involved in portal hypertension andmight be potential
targets for anti-fibrotic therapy (Rosmorduc, 2010).

ANTI-FIBROTIC ACTIVITY OF
MULTITARGETED TYROSINE KINASE
INHIBITORS

Over the past decade, numerous small molecule inhibitors
targeting TKs have been developed (Table 1). Initially, these
synthesized drugs were developed for anti-tumor therapy. In
recent years, the application of multi-targeted TK inhibitors has
also dramatically changed the conventional treatment modes
for many other non-malignant diseases, especially for fibrotic
diseases (Beyer and Distler, 2013; Heldin, 2014). Given the
central role of TKs in liver fibrosis, blockade of the TKs appears
to be a promising anti-fibrotic treatment approach. Currently,
significant benefits of multitargeted TK inhibitors in liver fibrosis
have been observed in preclinical experiments on animal models
(Rossler et al., 2008; Grimminger et al., 2010). In the following
part, we will summarize recent findings of anti-liver fibrosis
effects of TK inhibitors (Table 2).

TK Inhibitors in Clinical Trials as
Anti-liver Fibrosis Agents
Sorafenib
As one of the most intensively investigated multitargeted TK
inhibitors, Sorafenib mainly targets Raf/ERK, VEGFR, and
PDGFR-β pathways. Mechanistic investigation demonstrated
that sorafenib exhibited potential anti-cancer activities by
inhibiting cellular proliferation, suppressing angiogenesis and
inducing apoptosis in various tumor types (Plastaras et al.,
2007). Clinical trails further revealed that sorafenib can be used
alone as the first treatment for advanced HCC. Interestingly,
during the course of anti-HCC treatment, clinicians observed
positive side effects of sorafenib on liver cirrhosis (Mejias
et al., 2009). The anti-fibrotic effect of sorafenib is clearly
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FIGURE 1 | Tyrosine kinases with central roles in liver fibrosis. The regulatory network is composed of receptor tyrosine kinases, including EGFR, VEGFR,
FGFR, and PDGFR kinases, and non-receptor tyrosine kinases, such as Src, c-Abl, and RhoA kinases, which stimulate the activation of HSCs and intrahepatic
angiogenesis.

TABLE 1 | IC50 values for TK inhibitors inhibition in vitro.

TK inhibitors IC50 values for TK inhibitors inhibition in vitro (nM)

VEGFR-1 VEGFR-2 VEGFR-3 PDGFR-α PDGFR-β FGFR-1 EGFR c-Kit Fit-3 Bcr/Abl

Sorafenib NR 15 20 NR 57 580 >10000 68 58 NR

Erlotinib NR NR NR NR NR NR 2 NR NR NR

Imatinib >10000 >10000 >10000 100 100 NR NR 100 >10000 600

Sunitinib NR 80 NR NR 2 >1000 >1000 NR NR NR

Nilotinib NR NR NR NR NR NR NR NR NR <30

Brivanib 380 25 NR NR >1000 148 >1000 NR NR NR

Vatalanib 77 37 660 NR 580 NR NR 730 NR NR

TK inhibitors, tyrosine kinase inhibitors; NR, not reported. Data taken from http://www.selleckchem.com/.

demonstrated by numerous experiment studies. In nearly all
animal models of liver fibrosis, such as carbon tetrachloride
(CCl4), bile duct ligation (BDL), dimethylnitrosamine (DMN),
diethylnitrosamine (DEN), or thioacetamide (TAA) induced
models, sorafenib exhibits anti-liver fibrosis effects (Hennenberg
et al., 2009; Wang et al., 2010; Thabut et al., 2011; Hong et al.,
2013; Westra et al., 2014a; Liu et al., 2015; Stefano et al., 2015;
Table 2).

Hepatic stellate cells are recognized as the main matrix-
producing cells and being responsible for excessive deposition
of extracellular matrix components during liver fibrogenesis.
Mechanistic investigations revealed that sorafenib inhibited
PDGF-BB-induced cellular proliferation in a dose-dependent
manner in HSCs (Wang et al., 2010). The anti-proliferation of
sorafenib on HSCs are found to be mediated by downregulating
expression of cyclins and cyclin dependent kinases (CDKs) and
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TABLE 2 | Summary of anti-liver fibrosis effects of TK inhibitors in preclinical studies.

TK inhibitors Effects on fibrotic processes Animal models of liver fibrosis used for evaluation

HSC activation Angiogenesis CCl4 BDL TAA DEN DMN NASH PCLS Pig serum Parasite

Sorafenib
√ √ √ √ √ √ √ √ √

Erlotinib
√ √ √ √

Imatinib
√ √ √ √ √ √ √

Sunitinib
√ √ √ √

Nilotinib
√ √ √ √

Brivanib
√ √ √ √ √ √

Vatalanib
√ √

CCl4, carbon tetrachloride; BDL, bile duct ligation; DEN, diethylnitrosamine; DMN, dimethylnitrosamine; TAA, thioacetamide; NASH, non-alcoholic steatohepatitis model;
PCLS, precision-cut liver slices from fibrotic livers; Parasite, Schistosoma mansoni.

TABLE 3 | Tyrosine kinase inhibitors in clinical trials as anti-liver fibrosis agents.

TK inhibitors ClinicalTrials.gov identifier Recruited parcitipants Intervention Study phase Status

Sorafenib NCT01714609 Liver cirrhosis participants
with portal hypertension

Sorafenib 400mg p.o. twice daily Phase II Completed

Erlotinib NCT02273362 Liver cirrhosis participants
following HCC resection

Erlotinib p.o. for 7 days Phase I Recruiting

inhibiting the phosphorylation of ERK and Akt (Plastaras et al.,
2007; Tomizawa et al., 2010). Recently, increasing evidence have
shown that enhanced intrahepatic angiogenesis is associated
with faster fibrosis progression and thus has been identified as
a crucial contributor to the fibrogenesis. Thabut et al. (2011)
also reported that sorafenib was capable of inhibiting the
Kruppel-like factor (KLF6)-Angiopoietin-1 (Ang1)-fibronectin
molecular triad, thereby suppressing intrahepatic angiogenesis
and attenuating liver fibrosis (Thabut et al., 2011).

In preclinical experiments, sorafenib is also found to attenuate
the complications of liver cirrhosis. Portal hypertension is a life-
threatening complication of liver disease defined by a portal
venous pressure gradient exceeding 5 mm (Lee and Kim, 2007).
Preclinical studies showed that sorafenib treatment resulted in
a reduction in portal pressure and angiogenesis in BDL rats
without affecting systemic blood pressure (Tugues et al., 2007;
Mejias et al., 2009; Rosmorduc, 2010). Hennenberg et al. (2009)
found that the effect of sorafenib on intrahepatic angiogenesis
and portal hypertension is mediated by Rho kinase activity
(Hennenberg et al., 2009). Additionally, it is also be observed that
sorafenib may influence hepatopulmonary (Chang et al., 2013;
Yang et al., 2014) and hepatic encephalopathy syndrome (Hsu
et al., 2012) in cirrhotic rats.

In early clinical trials of sorafenib as anti-HCC agent, it was
observed that patients with liver cirrhosis who received sorafenib
therapy had a decrease in portal venous flow of at least 36%
(Coriat et al., 2011). Similarly, in a small clinical study, Pinter
et al. (2012) also reported the protective effect of a 2-weeks
sorafenib treatment on portal hypertension in HCC patients with
liver cirrhosis (Pinter et al., 2012). Additionally, Theysohn et al.
(2012) found that sorafenib reduced hepatopulmonary shunt in
patients with liver cirrhosis, which might greatly improve the
prognosis of these patients (Theysohn et al., 2012). Recently, a
multi-center, placebo-controlled randomized clinical trial of the

effect of sorafenib on portal pressure in patients with cirrhosis
was carried out (NCT01714609, Table 3). Researchers recruited
patients with cirrhosis who have high portal vein pressure and
treated them using sorafenib (400 mg twice daily) or placebo.
Results from this clinical trial might supply evidence for clinicians
to use sorafenib as anti-liver fibrosis agent.

Erlotinib
Erlotinib was the second EGFR TK inhibitor approved by the
FDA for non-small cell lung cancer (NSCLC). Fuchs et al. (2014)
observed that erlotinib, used at doses equivalent to or less than
those used in humans, significantly reduced fibrogenesis in three
different animal models of progressive cirrhosis: DEN or BDL
induced rat model and CCl4 induced mouse model. They also
found that erlotinib reduced the number of activated HSCs
by depressing EGFR phosphorylation in HSCs. An undergoing
clinical trial (NCT02273362, Table 3) is conducted to evaluate
the effects of erlotinib in fibrogenesis inhibition and HCC
prevention.

Other TK Inhibitors Exhibited Potential
Anti-liver Fibrosis Activity in Preclinical
Experiments
Imatinib
Imatinib (also known as STI571), is a potent, competitive 2-
phenylamonioyrimideine class inhibitor of three TKs, PDGFR,
Bcr-Abl, and c-Kit. It is initially developed for the treatment
of chronic myeloid leucemia (CML) and gastrointestinal stroma
tumors (by targeting c-Kit). Given its inhibitory capacity on
PDGFR which plays an critical role in the activation of
fibroblasts, imatinib therefore is considered as a potential
therapeutic candidate for the treatment of fibrotic diseases.
Akhmetshina et al. (2009) found that imatinib did not only
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prevent but also reverse established fibrosis in systemic sclerosis
models. Apart from SSc, the anti-fibrotic effects of imatinib were
consequently observed in pulmonary, renal and liver fibrosis
(Daniels et al., 2004; Abdollahi et al., 2005; Wang et al., 2005;
Yoshiji et al., 2005). In many animal models of liver fibrosis,
such as CCl4, BDL, TAA, or Schistosoma mansoni induced liver
fibrosis, imatinib exhibits anti-liver fibrosis effects (Yoshiji et al.,
2005; Neef et al., 2006; El-Agamy et al., 2011; Shaker et al., 2011a;
Kuo et al., 2012; Shiha et al., 2014). In a pig serum-induced
liver fibrosis model, Yoshiji et al. (2005) found that imatinib
attenuated liver fibrosis via suppressing HSCs activation. In
addition, imatinib exhibits increased anti-liver fibrosis activities
when used in combination with an angiotensin-converting
enzyme inhibitor (ACE-I), perindopril, which suppresses TGF-β1
expression (Yoshiji et al., 2006).Westra et al. (2014a,b) conducted
an in vitro model using prolonged culture of precision-cut liver
slices to screen antifibrotic drugs. It was also found that Imatinib
could significantly decrease the expression of fibrosis markers,
such as α-SMA, Pcol1A1, and Hsp47 (Westra et al., 2014b).

It should be noted that, different from sorafenib, imatinib
seems to only reduce early liver fibrogenesis but does not prevent
progression in the long term. In a study reported by Neef
et al. (2006), it was found that prophylactic imatinib markedly
reduced fibrosis in the first 3 weeks after BDL. Early imatinib
treatment induced a 50% decrease of MMP-2 activity and TIMP-
1 expression in HSCs, but left numbers of activated HSCs
unchanged (Neef et al., 2006). Moreover, when imatinib was
used in advanced fibrosis models, it neither reduced numbers of
activated HSCs nor inhibit extracellular matrix production.

Sunitinib
Sunitinib is an oral indolin-2-one structural analog, which
inhibits multiple RTKs such as VEGFR1/2/3, PDGFR-α/β, FGFR,
and c-Kit (Faivre et al., 2007). Clinical trials revealed that
sunitinib had potent anti-tumor and anti-angiogenesis effects
in multiple cancer types. In liver fibrosis models, sunitinib
has been shown to decrease inflammatory infiltration and
expression of fibrosis markers in fibrotic livers (Tugues et al.,
2007; Westra et al., 2014a). A in vitro study conducted by
Majumder et al. (2013) revealed that sunitinib inhibited collagen
synthesis in HSCs by 47%, attenuated HSC contraction by
65%, and reduced cell migration by 28%. In addition, they
also found that sunitinib suppressed angiogenic capacity of
endothelial cells (ECs). Similarly, it was also observed that
sunitinib could decrease the number of vascular cell adhesion
molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1) positive staining hepatic vessels, and consequently
reduced portal vein pressure in cirrhotic rats (Tugues et al., 2007).

Nilotinib
Nilotinib, a selective BCR-ABL TK inhibitor, is shown to be 30-
fold more potent than imatinib in preclinical in vitro studies.
Shaker et al. (2011a,b,c, 2013) found that nilotinib had a
promising anti-fibrotic activity in experimental models of liver
fibrosis by inhibiting activation of HSCs (Shiha et al., 2014). Liu
et al. (2011) also reported that nilotinib significantly inhibited
PDGF and TGF-β-simulated activation of ERK and Akt and

consequently reduced collagen deposition and α-SMA expression
in CCl4 and BDL-induced fibrotic models.

Brivanib
Brivanib is an orally available dual inhibitor of VEGF and FGF
signaling. Nakamura et al. (2014) evaluated the anti-liver fibrosis
effects of brivanib on three experimental fibrotic mouse models,
including BDL, CCl4, and chronic TAA induced mouse models
of fibrosis. Lin et al. (2014) further found that brivanib markedly
suppressed intrahepatic angiogenesis and portal hypertension in
cirrhotic rats. Similarly, Yang et al. (2014) also observed brivanib
improved hepatic blood flow and inhibited ascites formation in
NASH-cirrhotic rats.

Vatalanib
Vatalanib (also known as PTK787/ZK22258) is found to mainly
target VEGFR-1 and VEGFR-2, and it also inhibits the activity
of PDGFR-β, Flt-4, c-kit, and c-fms with less potency. In liver
fibrosis models, Liu et al. (2009a,b) reported that vatalanib
attenuated stellate cell activation and liver fibrosis progression by
inhibiting VEGF signaling as well as targeting of the PDGF and
TGF-β-signaling pathways.

HEPATOTOXICITY OF TK INHIBITORS:
AN IMPORTANT ISSUE LIMITED THEIR
CLINICAL USE

Most of TK inhibitors are metabolized in liver by hepatic
cytochrome P450 enzyme system (Druker, 2003; Lathia et al.,
2006; Peer et al., 2012), implying a potential hepatotoxicity
when they are administrated in patients. Iacovelli et al. (2014)
conducted a meta-analysis base on 3691 patients who received
TK inhibitors treatment and found hepatotoxicity occurred in
23–40% of patients treated with TK inhibitors. It is been found
that hepatotoxicity usually occurred within the first 2 months
after TK inhibitors treatment (Shah et al., 2013). Fatality from
TK inhibitor-induced hepatotoxicity is less common compared
to hepatotoxic drugs in other classes, but may lead to unfavorable
events including liver cirrhosis and even liver failure (Cross et al.,
2006; Schramm et al., 2008; Tonyali et al., 2010; Shah et al., 2013).
In the following aspect, we summarized the hepatotoxicity of TK
inhibitors that observed in clinical cases.

Sorafenib is reported to exhibit a high degree of inter-
individual variability in pharmacokinetics and clinical efficacy.
The magnitude of variability on sorafenib exposure (area under
the plasma concentration-time curve, AUC) ranged from 5 to
83%, and the peak plasma concentrations varied from 33 to
88% at oral doses of 200 or 400 mg administrated twice daily.
The median time to peak plasma concentration varied from 2
to 9.5 h (Awada et al., 2005; Clark et al., 2005; Moore et al.,
2005; Strumberg et al., 2007). Hepatotoxicity was reported during
the therapy periods in some clinical cases. Llanos et al. (2009)
reported a case of sorafenib-induced severe hepatotoxicity in a
73-years-old man with Child-Pugh A hepatitis-C virus-related
cirrhosis and multinodular HCC. Schramm et al. (2008) also
reported a case of sorafenib-induced liver failure. In addition,
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acute liver failure caused by imatinib and sunitinib have also been
observed (Cross et al., 2006; Tonyali et al., 2010; Shah et al., 2013).

Due to the activity of TKs plays an essential role in many
physiological processes and its inhibition by TK inhibitors may
lead to side effects as discussed above. Therefore, targeting liver
fibrosis via specific delivery of TK inhibitors to HSCs might
reduce side effects. Gonzalo et al. (2007) conducted a HSC-
selective carrier mannose-6-phosphate modified human serum
albumin (M6PHSA) to combine with a TK inhibitor which
exhibited potent anti-fibrotic effects. Their findings supply a
promising approach to attenuate liver fibrogenesis using TK
inhibitors.

PERSPECTIVE

Many intracellular signaling pathways are activated inappropriate
during fibrogenesis, in which the activation of TKs is
recognized the initial trigger for HSC activation and intrahepatic
angiogenesis. The treatment for liver fibrosis, in the past, tends
to focus on only one target. As a result, poor benefits obtained
despite non-corresponding efforts. Nowadays, accumulating
preclinical experiments of multitargeted TK inhibitors made it
possible to analyze and look forward to whether TK inhibitors
have beneficial effects on not only malignant tumors but also
fibrotic disease. Clinical trials of two TK inbhitors (sorafenib and
erlotinib) have been carried out and encouraging results have
already obtained. Based on the advantages of multitargeted TK
inhibitors, targeted therapy might become major approaches for
treating liver fibrosis in future.

It also should point out that the usefulness of TK inhibitors
for long term treatment of liver fibrosis depends on the severity
of the side effects. Although the most common adverse effects of

TK inhibitors including rash, gastrointestinal symptoms, fatigue,
edema, and neurological symptoms are generally mild and
tolerable for liver fibrosis patients, liver function impairment and
even acute liver failure have been observed in some clinical cases.
Specific delivery of TK inhibitors to selective cells, such as HSCs,
might be promising approach to attenuate liver fibrosis in future.
Besides, the high price of TK inhibitors might also limit their
application on liver fibrosis.

Given together, TK inhibitors are efficient not only on
malignant tumors, but also on some non-malignant diseases,
especially liver fibrosis. In the near future, clinical application of
TK inhibitors on liver fibrosis will turn out to be not merely an
efficient but also safety treatment.
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