967 research outputs found

    Experimental and theoretical investigation of passive damping concepts for member forced and free vibration

    Get PDF
    Potential passive damping concepts for use in space structures are identified. The effectiveness of copper brush, wool swab, and silly putty in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one, two, and three damper chambers containing silly putty. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance

    Comment on `Renormalization-Group Calculation of the Dependence on Gravity of the Surface Tension and Bending Rigidity of a Fluid Interface'

    Full text link
    It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration gg, so that its results cannot be applied to critical properties of interfaces for g0g\to 0.Comment: A Comment on a recent Letter by J.G. Segovia-L\'opez and V. Romero-Roch\'{\i}n, Phys. Rev. Lett.86, 2369 (2001). Latex file, 1 page (revtex

    Penerapan Sistem Monitoring Terapi Arv(antiretroviral) dengan Metode Client Server Berbasis Smartphone pada Rsup Dr. Sardjito

    Full text link
    AIDS (Acquired Immune Deficiency Syndrome) adalah salah satu penyakit yang menyita perhatian yang besar dalam dunia medis. AIDS merupakan suatu penyakit yang berupa sekumpulan gejala dan infeksi atau sindrom yang ditimbulkan oleh rusaknya sistem kekebalan tubuh manusia akibat infeksi virus HIV (Human Immunodeficiency Virus). Penangan penyakit AIDS dalam dunia medis adalah dengan terapi pengobatan ARV. Dalam menjalankan terapi ARV harus meminum obat harus disiplin ketat dan terus menerus seumur hidup ODHA(Orang Dengan HIV / AIDS) untuk menghambat replikasi virus HIV, namun dalam Kenyataanya banyak pasien penyakit AIDS yang tidak mendapatkan hasil yang optimal dalam menalankan terapi HIV, karena kurangnya tingkat kepatuhan pasien dalam mengkonsumsi obat dalam menjalani terapi ARV. Subjek yang menjadi penelitian ini adalah penerapan sistem monitoring untuk pemantauan pelaksanaan terapi pengobatan ARV. Metode penelitian yang digunakan dengan studi pustaka dan wawancara dengan petugas klinik pengobatan HIV/AIDS. Tahap analisis dilakukan untuk menentukan spesifikasi sistem monitoring agar sesuai dengan kebutuhan. Tahap analisis meliputi perancangan sistem, perancangan database dan perancangan antarmuka. Metode yang digunakan pada tahap implementasi adalah client server, dimana aplikasi server dikembangkan menggunakan PHP dengan Framework Codeigniter, sedangkan aplikasi client menggunakan bahasa pemrograman JAVA untuk mengembangankan aplikasi berbasis smartphone Android. Sistem yang dihasilkan diuji dengan dua metode yaitu Black Box Test dan Alfa Test.Hasil dari penelitian ini adalah sebuah sistem monitoring yang terdiri dari aplikasi server berbasis web dan aplikasi client berbasis Android yang dapat membantu proses pemantauan kepatuhan dan pemantauan pekembangan CD4 pasien HIV/AIDS ARV untuk mensukseskan pelaksanaan terapi ARV

    Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

    Get PDF
    We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor=Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait

    Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications

    Get PDF
    An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2

    Spurious phase in a model for traffic on a bridge

    Full text link
    We present high-precision Monte Carlo data for the phase diagram of a two-species driven diffusive system, reminiscent of traffic across a narrow bridge. Earlier studies reported two phases with broken symmetry; the existence of one of these has been the subject of some debate. We show that the disputed phase disappears for sufficiently large systems and/or sufficiently low bulk mobility.Comment: 8 pages, 3 figures, JPA styl

    Gas permeation through a polymer network

    Full text link
    We study the diffusion of gas molecules through a two-dimensional network of polymers with the help of Monte Carlo simulations. The polymers are modeled as non-interacting random walks on the bonds of a two-dimensional square lattice, while the gas particles occupy the lattice cells. When a particle attempts to jump to a nearest-neighbor empty cell, it has to overcome an energy barrier which is determined by the number of polymer segments on the bond separating the two cells. We investigate the gas current JJ as a function of the mean segment density ρ\rho, the polymer length \ell and the probability qmq^{m} for hopping across mm segments. Whereas JJ decreases monotonically with ρ\rho for fixed \ell, its behavior for fixed ρ\rho and increasing \ell depends strongly on qq. For small, non-zero qq, JJ appears to increase slowly with \ell. In contrast, for q=0q=0, it is dominated by the underlying percolation problem and can be non-monotonic. We provide heuristic arguments to put these interesting phenomena into context.Comment: Dedicated to Lothar Schaefer on the occasion of his 60th birthday. 11 pages, 3 figure

    Methyl 2-methyl-4-(oxiran-2-ylmeth­oxy)-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

    Get PDF
    In the title compound, C14H15NO6S, the thia­zine ring adopts a distorted half-chair conformation. The structure displays several cooperative weak inter­molecular C—H⋯O hydrogen-bonding inter­actions, giving rise to a two-dimensional sheet packing motif. The CH2 group in the meth­oxy linker to the oxirane ring, and the CH group in that ring, exhibit twofold positional disorder. The three-membered oxirane ring is twisted approximately perpendicular with respect to thia­zine ring (dihedral angle = 60/86° for the major/minor disorder components). 1,2-Benzothia­zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis

    Will jams get worse when slow cars move over?

    Full text link
    Motivated by an analogy with traffic, we simulate two species of particles (`vehicles'), moving stochastically in opposite directions on a two-lane ring road. Each species prefers one lane over the other, controlled by a parameter 0b10 \leq b \leq 1 such that b=0b=0 corresponds to random lane choice and b=1b=1 to perfect `laning'. We find that the system displays one large cluster (`jam') whose size increases with bb, contrary to intuition. Even more remarkably, the lane `charge' (a measure for the number of particles in their preferred lane) exhibits a region of negative response: even though vehicles experience a stronger preference for the `right' lane, more of them find themselves in the `wrong' one! For bb very close to 1, a sharp transition restores a homogeneous state. Various characteristics of the system are computed analytically, in good agreement with simulation data.Comment: 7 pages, 3 figures; to appear in Europhysics Letters (2005
    corecore