DEPARTMENT OF CIVIL ENGINEERING COLLEGE OF ENGINEERING AND TECHNOLOGY OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA 23529

Langley
Grate
$1 N-39-c n$
151329
P-125

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PASSIVE DAYPIFG CONCEPTS FOR MEMBER FORCED AND FREE VIBRATION

By
Via Razzaq, Principal Investigator David W. Mykins, Graduate Research Assistant

Progress Report
For the period ended December 31, 1987

Prepared for the
National Aeronautics and Space Administration Langley Research Center
Hampton, Virginia 23665

Under
Research Grant NAG-1-336
Harold G. Bush, Technical Monitor SDD-Structural Concepts Branch
(NASA-CR-183082) EXPERIMENTAL AND N88-26693
THEORETICAL INVESTIGATION OF PASSIVE DAMPING CONCEPTS FOR MEMBER FORCED AND FREE
VIBRATION progress Report; period ending 31 . Uncles Dec. 1987 (Old Dominion Univ.) 125 p G3/39:0151329

DEPARTMENT OF CIVIL ENGINEERING COLLEGE OF ENGINEERING AND TECHNOLOGY OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA 23529

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PASSIVE DANPING CONCRPTS FOR MEMBER FORCED AND FRRE VIBRATIOI

By
Zia Razzaq, Principal Investigator
David W. Mykins, Graduate Research Assistant

Progress Report
For the period ended December 31, 1987

Prepared for the
National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

Under
Research Grant NAG-1-336
Harold G. Bush, Technical Monitor SDD-Structural Concepts Branch

Submitted by the Old Dominion University Research Foundation P.O. Box 6369

Norfolk, Virginia 23508-0369

ACKNOWLEDGEMENTS

The thought-provoking discussions of Mr. Harold G. Bush and Dr. Martin M. Mikulas, Jr. of SDD-St ructural Concepts Branch, NASA Langley Re search Center are sincerely appreciated. Thanks are also due to Mr . Robert Miserentino and his technical staff for providing help in calibration of the vibration apparatus.

By

Zia Razzaq ${ }^{1}$ and David W. Mykins ${ }^{2}$

ABSTRACT

The results presented in this research report are the outcome of an ongoing study directed toward the identification of potential passive damping concepts for use in space structures. The effectiveness of copper brush, wool swab, and "silly putty" in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one, two, and three silly putty in chamber dampers. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results are based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance.

[^0]
NOMENCLATURE

$[\mathrm{C}]=$ damping matrix for member
[D] = displacement vector
$[\dot{D}]=$ velocity vector
[Di] $=$ acceleration vector
$\left[D_{j}\right]=$ displacement vector at node j
$E=$ Young's Modulus
$I=$ moment of inertia
$[K]=$ global stiffness matrix for member
$[R]=$ forcing function vector
$\gamma \beta=$ arbitrary constants for Newmark's method
$\Delta_{d}=$ dynamic deflection amplitude
$\Delta_{F}=$ static midspan deflection
$\Delta_{S}=$ static midspan deflection
$\Delta t=$ time increment
Φ = modal vector
$\eta=$ damping efficiency index
$\Omega=$ frequency of applied forcing function
$\omega=$ natural frequency
$\omega_{\mathrm{fe}}=$ natural frequency from finite element analysis
$\rho=$ mass density
$\zeta=$ damping ratio

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS . iii
ABSTRACT. iv iv
NOMENCLATURE . v
LIST OF TABLES... $v i$
LIST OF FIGURES.. ix

1. Introduction. 1
1.1 Background and Previous Work. 1
1.2 Problem Definitions... 2
1.3 Objective and Scope... 3
1.4 Assumptions and Conditions....................................... 4
2. Theoretical Formulation... 5
2.1 Finite Element Formulation.. 5
2.2 Newmark's Method... 8
2.3 Central Difference Formulation.................................... . 10
3. Experimental Study. 12
3.1 Specimen and Connection Details.................................. 12
3.1.1 Specimen.. 12
3.1.2 Connection Details... 12
3.2 Passive Damping Concepts... 13
3.2.1 Copper Brush Dampers... 13
3.2.2 Wool Swab Dampers... 15
3.2.3 Silly Putty in Chamber Dampers......................... 15
3.3 Test Setup and Procedures... . . 16
3.4 Test Results and Discussion..................................... 17
3.4.1 Natural Vibration.. 17
3.4.1.1 Copper Brush Dampers.............................. 19
3.4.1.2 Wool Swab Dampers................................ 20
3.4.1.3 Silly Putty in Chambers Dampers............. 20
3.4.2 Forced Then Free Vibration................................. 21
3.4.2.1 Silly Putty in Chamber Dampers............... 22
3.5 Comparison of Damping Efficiencies.............................. 23

TABLE OF CONTENTS - Continued

Page
4. Numerical Study 25
4.1 Natural Vibration 25
4.1.1 Finite Element Versus Experimental 25
4.1.2 Finite Element versus Finite-Difference. 25
4.2 Forced Then Free Vibration. 26
4.3 Finite Element Analysis for Forced Vibration 27
5. Conclusions and Future Research 29
5.1 Conclusions 29
5.2 Future Research 30
References 31
APPENDIX A STIFFNESS MATRIX FORMULATION 85
APPENDIX B COMPUTER PROGRAMS 90
VITA AUCTORIS 114

1	Member natural vibration test results for copper brush, wood swab, and silly putty in chamber dampers.

2(a) Dampng ratios from natural vibration tests with copper brushes and no cord tension. 34
2(b) Damping ratios from natural vibration tests with copper brushes and nominal cord tension 34
3(a) Damping ratios for natural vibration tests with wool brushes and concentric cord support. 35
3(b) Damping ratios for natural vibration tests with wool brushes and eccentric cord support 35
4(a) Damping ratios for natural vibration tests with silly putty and no cord tension 36
4(b) Damping ratios for natural vibration tests with silly putty and nominal cord tension 36
5 Member forced then free vibration test results for silly putty in chamber dampers 37
Figure Page

1. Schematic of tubular member 39
2. Example of finite element model for the beam 40
3. Some end connection details 41
4. Member end connection 42
5. Copper brush damper 43
6. Schematic of attachments for passive damper inside tubular member 44
7. Schematic for spacing of passive dampers 45
8. Helical spring attachment at end e 46
9. Stretched helical spring at end e 47
10. Wool swab damper 48
11. Silly putty in chamber damper 49
12. Schematic of member natural vibration setup 50
13. Proximity probe 51
14. Member forced vibration setup 52
15. Schematic of member forced vibration setup 53
16. Vibrator connector details 54
17. Vibrator connector in engaged and disengaged positions 55
18. Average Δ-t plot for member with no dampers 56
19. Average Δ-t plot for member with 3 copper brush dampers 57
20. Effect of 3 copper brush dampers on Δ-t envelope 58
21. Average Δ-t plot for member with 3 wool swab 59
22. Average Δ-t plots for members with 1 wool swab damper 60
23. Effect of 3 wool swab dampers on Δ-t envelope 61
24. Effect of 1 wool swab damper on $\Delta-t$ envelope 62
LIST OF FIGURES - (Continued)
Page
25. Average Δ-t plot for member with 3 silly putty in chamber dampers 63
26. Average Δ-t plot for member with 2 silly putty in chamber dampers 64
27. Effect of 3 silly putty in chamber dampers on Δ - t 65
28. Effect of 2 silly putty in chamber dampers on Δ-t envelope 66
29. Experimental Δ-t plots for member "constrained" forced then free vibration with no dampers and frequencies of 2, 5, 7 and 9 Hz 67
30. Experimental Δ-t plot for member "constrained" forced then free vibration with 2 silly putty in chamber damper and forcing function frequencies of $2,5,7$, and 9 Hz 68
31. Experimental Δ-t plot for member "constrained" forced then free vibration with 1 silly putty in chamber damper and forcing function frequencies of $2,5,7$, and 9 Hz 69
32. Experimental Δ-t plots for member "constrained" forced free vibration with 3 silly putty in chamber dampers and forcing function frequencies of $2,5,7$, and 9 Hz 70
33. Damping efficiency index versus weight curves for natural vibration tests 71
34. Damping efficiency index versus number of dampers for natural vibration tests 72
35. Finite element versus average experimental $\Delta-t$ plots for member with no dampers 73
36. Finite element versus average experimental $\Delta-t$ plots for member with 3 copper brush dampers 74
37. Finite element versus finite difference Δ-t plots for member with no dampers 75
38. Finite element versus finite difference $\Delta_{\text {-t }}$ plots for member with 3 copper brush dampers 76
39. Finite element versus finite difference Δ-t plots for simply supported beam with no dampers 77
40. Finite element $\Delta-t$ plot for member with no dampers and subjected to a 4.0 lb . force at 2 hz for 1 second 78
41. Finite element forced then free Δ-t plot for member with
LIST OF FIGURES - (Concluded) Page
no dampers and subjected to a 4.0 lb . force at 6 Hz for 1 second. 79
42. Theoretical and experimental forced then free Δ-t plots for a 4.0 lb . force at 2 Hz for 1 second on member with one silly putty in chamber damper. 80
43. Theoretical and experimental forced then free Δ-t plots for a 4.0 lb . force at 2 Hz for 1 second member with no dampers. 81
44. Theoretical dynamic magnification factor versus frequency ratio for damping ratios of $0.0094,0.0131$ and 0.5 82
45. Theoretical Δt plots for member with no dampers and with 3 copper brush dampers with a forcing function of 6.35 Hz for one second. 83

1. INTRODUCTION

1.1 Background and Previous Work

The space station designs currently under consideration by NASA are three-dimensional space structures composed of long tubular members. Modules providing the required living and working space for astronauts will be attached to this framework. Such a structure, suspended in a weightless environment, would be subjected to many types of dynamic loading. These include differential heating or cooling of the structure, variations in acceleration or gravitational pull, and impact with a solid object. The ability to expeditiously damp these vibrations before they cause permanent damage is a practical problem worth studying.

The necessarily large slenderness ratio of the average space truss member, combined with the flexible, semi-rigid end restraints cause the dynamic response of these members to be characterized by low frequency, small amplitude vibrations. Active damping techniques utilize electronic sensors and movable masses to reduce vibration of structures. This system, although effective, requires regular maintenance and an external power source. An alternative for mechanically damping a system is the concept of "passive" damping. This method uses a device or material permanently attached to the structure or its components and designed to absorb the energy of vibration thereby providing some damping of the system. Unlike "active" damping, this would require minimal maintenance and no external power.

The challenge to developing a passive damping concept, particularly for a space structure is two-fold. First is the necessity to minimize the mass, for without this constraint one obvious solution would be to provide large
mass concentrations at the critical nodal points for the vibration modes. Such an approach would be expensive since the cost of transporting the system into space is directly related to the mass. The second challenge is to identify a concept which will provide passive damping without altering the strength or stiffness of the structure. For example, mild compression of the members provides some damping, however, the safe service loads for the structure are altered.

Recently, investigations into passive damping concepts for slender tubular members have been conducted with various end conditions (References 1-5). The most effective concepts found were the mass-string-whiskers assembly, and brushes for electrostatic and frictional damping. In these experiments, only natural flexural vibration was examined.

The previous work was conducted on hollow tubular steel members with an outer diameter of 0.5 inches. The passive damping concepts which were found to be effective for these members may not be as effective if the dimensions are changed. Factors altered by dimensionsal changes may include the damper mass required, the extent of the frictional interaction, and the member dynamic characteristics. Clearly research is needed to identify a viable passive damping concepts for members of different sizes and dymanic properties. In the present study, hollow tubular aluminum members with an outside diameter of 2.0 inches are used. These members more closely resemble the actual size and material which may be used in the future space stations.

1.2 Problem Definition

Figure 1 shows schematically a slender beam of length L with a hollow circular cross section. The outer diameter is D_{0} the inner diameter is D_{1},
and the material is aluminum with a Young's modulus of $10,000 \mathrm{ksi}$. An aluminum member is used because the graphite composite tubes which may possibly be used in space structures are not yet available. The member ends are provided with a prototype connection developed by NASA for the space frames. These connections possess partial rotational restraint characteristics in the plane of motion and a more rigid end condition in the orthoganal plane. No axial or lateral movement of the member ends is permitted.

The problem is to identify potential passive damping concepts to absorb the energy of both natural flexural vibration, and harmonic forced flexural vibration, and to study the effectiveness of each concept. The natural vibration is caused by the sudden release of a constant static load. The harmonic forcing function is applied through a mechanical connection to a harmonic vibrator.

1.3 Objective and Scope

The following are the main objectives of this study:

1. Identification of potential passive damping concepts for slender tubular structural members. Specifically, the following damping concepts are investigated:
a. wool swabs,
b. copper brushes,
c. silly putty in chambers.
2. Evaluation of the damping efficiencies of the various damping concepts.
3. Evaluation of the suitability of a theoretical finite element analysis by comparison to experimental results for natural and
forced vibration, and a previous finite-difference solution for natural vibration.

Only flexural member vibration is considered. The natural vibration study is conducted on each of the three passive damping concepts and for one specific initial deflection. Only the most efficient damping concept is considered for further study under forced vibration. Also, the vibration is induced by load application at the member midspan.

1.4 Assumptions and Conditions

The following assumptions and conditions have been adopted in this study:

1. The deflections are small.
2. The material of the member is linearly elastic.
3. Only planar vibration is considered.
4. Damping force is opposite but proportional to the velocity at any location along the member.
5. The damping force is uniform along the length of the member.
6. The member is tested at $1-g$ and room temperature.
7. The effect of secondary induced forces such as varying axial tension and compression developed in the member during vibration is considered to be negligible.

2. THEORETICAL FORMULATION

2.1 Finite Element Formulation

The beam shown in Figure 1 may be divided into N finite elements along the length. For the discretized system, the governing equation of motion can be expressed in the following matrix form (Reference 6):
$[K]\{D\}+[M]\{D\}+[C]\{D\}=\{R\}$
where:
$\{D\}=$ displacement vector,
$\{\dot{\mathrm{D}}\}=$ velocity vector,
(̈D $\}=$ acceleration vector,
$[K]=$ global stiffness matrix for the "structure",
$[M]=$ global modified lumped mass matrix,
$[C]=$ damping matrix,
$\{R\}=$ forcing function vector.

The boundary and initial conditions for the problem shown in Figure 1 are given in Reference 2 and are summarized here:
$D(0, t)=0$
$D(L, t)=0$
$E I D^{\prime \prime}(0, t)=k_{1} D^{\prime}(0, t)$
$E I D^{\prime \prime}(L, t)=-k_{2} D^{\prime}(L, t)$
$\dot{D}(x, 0)=0$
$D(x, 0)=0(x ; K, E I, L)$
where primes represent differentiation relative to x , and dots represent time differentiation. The displacement vector at any node j along the member can be written as:
$\left\{D_{j}\right\}=\left\{\begin{array}{l}d_{j} \\ d_{j}\end{array}\right\}$
where d_{j} and d^{\prime}, represent, respectively, the deflection and slope of j.
Equations 2 to 5 represent the boundary conditions whereas Equations 6 and 7 are the initial conditions. Equation 7 simply states that at time zero, the member deflected shape is dependent on $\mathrm{x}, \mathrm{K}, \mathrm{EI}$ and L .

The first task toward the solution of the matrix equation is the assembly of the three coefficient matrices. The [K] matrix is assembled from the individual element matrices combined in such a way so as to enforce the given boundary and inter-element compatability conditions. To illustrate the procedure, an example of a beam with four elements as shown in Figure 2 is given in Appendix A.

The global mass matrix is a diagonal form of a lumped mass matrix which was developed (Reference 6) for use with elements where translational degrees of freedom are mutually parallel, such as beam or plate elements.

This matrix may be written as:

where:
$m=$ mass at each degree of freedom $=\rho L(A)$
$\rho=$ mass density (mass $/$ in 3)
$L=$ length of element (in)
$A=$ cross sectional area of element (in ${ }^{2}$)

In order to calculate the damping matrix [C], it is necessary to first determine the modal shape and natural frequencies of the system. This is accomplished numerically by solving the following eigen value problem using the Jacobi method (Reference 7):
$\left([K]-\omega^{2}[M][\{\Phi\}]=\{0\}\right.$
where:
$\omega=$ natural frequency,
$\{\Phi\}=$ modal vector.
Once ω and $\{\Phi\}$ are known, determination of the damping matrix proceeds as described in Reference 7.

Once all three coefficient matrices have been assembled, the solution of Equation 1 may proceed using any one of several solution algorithms available.

2.2 Newmark's Method

Newmark's method for solving the dynamic equilibrium equation is sometimes called the trapezoidal method because it is based on a linear interpolation to find succeeding points. This is done by assuming:
$\left.\left.\{D\}_{t+} \Delta_{t}=\{D\}_{t}+\Delta t\{\dot{D}\}_{t}+\Delta t^{2}\left(\left(\frac{1}{2}-\beta\right) \ddot{\{D}\right\}_{t}+\beta \dot{\operatorname{D}}\right\}_{t+} \Delta_{t}\right)$
and
$\left.\{\dot{\mathrm{D}}\}_{t+} \Delta_{t}=\{\dot{\mathrm{D}}\}_{t}+\Delta t((1-\gamma \dot{\gamma}) \dot{\mathrm{D}}\}_{t}+\gamma(\ddot{\mathrm{D}})_{\mathrm{t}+} \Delta_{\mathrm{t}}\right)$
where Δt is a time increment, and β and γ are arbitrary constants. By substituting Equations 11 and 12 into Equation 1 written at time $t a t+\Delta t$, one gets (Reference 6):
$\left([K]+\frac{\gamma}{\beta \Delta_{t}}[C]+\frac{\gamma}{\beta \Delta_{t}{ }^{2}}:[M]\right)\{D\}_{t+\Delta t}=(R\}_{t+\Delta t}+$
[C] $\left(\frac{\gamma}{\beta \Delta t}\{D\}_{t}+\frac{\gamma}{\beta}-1\{\dot{D}\}_{t}+(\Delta t) \frac{Y}{2 \beta}-1\{\ddot{D}\}_{t}\right)+$
$[M]\left(\frac{1}{\beta \Delta t^{2}}[D)_{t}+\frac{1}{\beta \Delta t}\{\dot{D}\}_{t}+\left(\frac{1}{2 \beta}-1\right)\{\ddot{D}\}_{t}\right)$
For a known loading function we may solve Equation 13 for the deflection at time $t=t+\Delta t$ using the deflection, velocity and acceleration at time t.

The algorithm for Newmark's solution is as follows:

1. Compute the coefficient matrices from geometric and material properties.
2. At $t=0$, set initial conditions by prescribing $\{D\}_{t=0}$ and $\{\dot{\mathrm{D}}\}_{t=0}$.
3. Use Equation 1 to solve for $\{\ddot{D}\}_{t=0}$.
4. Solve Equation 13 for $\{D\}_{t+\Delta t}$.
5. Solve Equation 11 for $\{\ddot{D}\}_{t+\Delta t}$.
6. Solve Equation 12 for $\{\dot{D}\}_{t+\Delta t}$.
7. $\quad \operatorname{Set}{ }^{\prime}\{D\}_{t}=\{D\}_{t+\Delta t} ;\{\dot{D}\}_{t}=\{\dot{D}\}_{t+\Delta t} ;\{\dot{D}\}_{t}=\{\dot{D}\}_{t+\Delta t}$.
8. If $t \leq$ total time desired, go to Step 4.
9. Stop.

This method of solution is unconditionally stable if $\gamma>0.5$ and $\beta>(2 \gamma+1)^{2} / 16$. With $\gamma=0.5$ and $\beta=0.25$, there are no amplitude errors in any sine wave motion regardless of its frequency, although the periods are overestimated. The mode shapes of the member in this study, however, are not known exactly. Nevertheless, γ and β values of 0.5 and 0.25 respectively, were tentatively chosen. The suitability of these values is evaluated later in Section 4.

The initial static deflection vector required in Step 2 of the algorithm may be determined using any one of the several classical structural analysis techniques. An approximate shape function for the member due to a specified midpoint displacement Δ_{0} at time $t=0$ is taken in the following form (Reference 2):
$d_{j}=A_{1}\left[\sin \frac{\pi x_{j}}{L}+\frac{k L}{4 \pi E I}\left(1-\cos \frac{2 \pi x_{j}}{L}\right)\right]$
where:
$A_{1}=\frac{\Delta_{0}}{1+\frac{\mathrm{kL}}{2 \pi \mathrm{EI}}}$
The initial slope of the member at any point is found by differentiating Equation 14 resulting in:
$d^{\prime}{ }_{j}=A_{1}\left[\frac{\pi}{L} \cos \frac{\pi x_{j}}{L}+\frac{k}{2 E I} \sin \frac{2 \pi x_{j}}{L}\right]$
where x_{j} is the position of node j along the member length.

2.3 Central Difference Formulation

The governing equations and formulation of the coefficient matrices to be used in the central difference method of solution are precisely the same as those previously given for Newmark's method. Once these geometric and physical properties are determined, one proceeds by writing the central difference expressions for both velocity and acceleration at an arbitrary time t :

$$
\begin{align*}
& (\dot{D})_{t}=\frac{1}{2(\Delta t)}\left[\{D\}_{t+\Delta t}-\{D\}_{t-\Delta t}\right] \tag{17}\\
& \left(\dot{D}_{t}=\frac{1}{(\Delta t)^{2}}\left[\{D\}_{t+\Delta t}-2\{D\}_{t}+\{D\}_{t-\Delta t}\right]\right. \tag{18}
\end{align*}
$$

Equations 17 and 18 may then be substituted into Equation 1 to yield, after some rearrangement:
$\left(\frac{[M]}{(\Delta t)^{2}}+\frac{[C]}{2(\Delta t)}\right)\{D\}_{t+\Delta t}=\{R\}_{t}-\left([K]-\frac{2[M]}{\left(\Delta t^{2}\right)}\right)\{D]_{t}$
$\left(\frac{[M]}{(\Delta t)^{2}}-\frac{[C]}{2(\Delta t)}\right)\{D\}_{t-\Delta t}$

The initial conditions $(\mathrm{D})_{0}$ and $\{\dot{\mathrm{D}}\}_{0}$ are prescribed and $(\dot{\mathrm{D}})_{0}$ is found by solving Equation 1. Once these are known Equations 17 and 18 may be solved simultaneously to yield the displacements $(D)_{-\Delta t}$ required to start the computations.
$(D)_{-\Delta t}=(D)_{0}-\Delta t(\dot{D}\}_{0}+\frac{(\Delta t)^{2}}{2}\{\ddot{D}\}_{0}$
The solution algorithm for central difference is as follows:

1. Compute the coefficient matrices from geometric and material properties.
2. Set $\Delta t=$ time step increment.
3. Set initial conditions by prescribing $(D)_{t=0}$ and $\{\dot{D})_{t=0}$.
4. Solve Equation 1 for $\{\dot{D}\}_{t=0}$.
5. Solve Equation 20 for (D) $-\Delta t$.
6. Solve Equation 19 for $(D)_{t+\Delta t}$.
7. Set $\{D\}_{t-\Delta t}=\{D\}_{t}$, and $\{D\}_{t}=\{D\}_{t+\Delta t}$.
8. If $t \leq$ total time desired, go to 6 .
9. Stop.

The central difference method is a conditionally stable, explicit
method of solution. Conditionally stable implies that if Δt is not chosen small enough, the predicted response of the system will grow unbounded. A preliminary numerical study showed that Δt must be in the range from 0.001 to 0.005 , therefore, $a \Delta t=0.001 \mathrm{sec}$. is used in this study.

3. EXPERIMENTAL STUDY

3.1 Specimen and Connection Details

3.1.1 Specimen

The experimental study consisted of conducting natural and forced vibration tests on a tubular aluminum member. The tests were performed both with and without passive damping devices present inside the member. The tubular member used was $14^{\prime}-9^{\prime \prime}$ long with an outside diameter of $2^{\prime \prime}$ and a wall thickness of $0.125^{\prime \prime}$, yielding an inside diameter of $1.75^{\prime \prime}$. A schematic of the member tested is shown in Figure 1 . Note that the member was horizontal for all testing, with gravitational forces acting in the plane of motion.

3.1.2 Connection Details

The prototype end connection used in this study is shown in Figure 3. It is constructed of an aluminum alloy, weights 0.595 lbs. excluding fastener bolts, and has a volume of $3.988 \mathrm{in}^{3}$. The connection has a total of nine clevis blades, six of which are in the horizontal plane. One of the blades is in the vertical plane (at C) and two are at 45 degrees to the horizontal plane. These two are located at 45 degrees relative to the vertical clevis and in the planes containing the two lower clevis blades shown in Figure 3 (a).

The fastner locations for the clevis blades in the horizontal plane are numbered 1 through 12. The member was fastened at locations 3 and 4 shown in Figure 3(a). Fasteners at locations 5 through 11 are used to mount the connection to a fixed base plate. No fastener was installed at location 12 due to an interference problem with the support underneath the base plate. This did not make any difference since the other fasteners provided
sufficient fixity. Each fastener has a diameter of 0.25 in . and a length of 0.94 in. Washers were used at locations 1 and 2 only.

The ends of the tubular member were threaded to allow one-half of the "snap-lock" connection to be screwed onto it. Small holes were drilled through this threaded connection and pins inserted to prevent rotation and loosening of the connection during testing. The other end of the snap-lock connection had its blade end fit snugly into one of the clevis blades of the prototype end connection and fastened by two bolts. The spring stiffness, k, shown in Figure 1 was determined by a statical analysis using an experimentally determined midspan deflection for a known concentrated load. This value was 53.1 k -in/rad. The assembled connection is shown in Figure 4.

3.2 Passive Damping Concepts

Three different types of passive dampers referred to in Section 1.4 are described in this section.

3.2.1 Copper Brush Dampers

Figure 5.shows a copper brush damper 0.8125 inches in diameter, of total length 3.125 inches and a weight of 13.0 grams. The brush is manufactured by Omack Industries, Onalaska, Wisconsin 54650 with a US Patent 41986 and an inventory control number 07668341989. It has a threaded aluminum piece 1.0 inch long at one end with a twisted wire 2.125 inches in length attached to it. The copper bristles are.attached to the entire length of the twisted wire. This type of brush is commonly used in cleaning the bore of a 12 gauge shotgun.

Figures 6 and 7 show schematically the attachments for the passive dampers and their spacing inside the tubular member. As shown in Figure 6,
the assembly consists of several parts. First, a helical spring with a stiffness of $0.44 \mathrm{lb} / \mathrm{in}$. is attached to the inside of the connection through a hook on the snap-lock connector as shown in Figure 8. A nylon line is tied to the other end of the spring and also connected to the first copper brush damper. The nylon line (sportfisher monofilament line manufactured by K-Mart Corporation, Troy, Michigan 48084, 8013.9, No. EPM-40, inventory control number 04528201391) used in this investigation has a 40 lb . capacity. A series of nylon line and dampers are attached along the member length until the other end of the tubular member is reached. The end of the nylon line is passed through a hole in the snap-lock connector and stretched by an amount of 2.0 inches in the longitudinal direction to induce nominal tension in helical spring. It is then secured to the vertical clevis at the support. The stretched helical spring is shown in Figure 9. The resulting passive damping assembly is aligned with the longitudinal axis of the tubular member due to the small amount of axial tension. No axial compression of the member is induced by the passive damping assembly on the tubular member since both ends of the nylon line are connected to the rigid supports. Since the nylon line is flexible, a significant portion of the stretching is due to elongation of the line itself with the remainder of the stretching taking place in the spring. The dampers are installed equidistantly between the ends of the member.

As a part of the present study, the effect of both number of brushes and presence or absence of tension on the nylon line, on member damping was examined.

In addition to baseline experiments on the specimen with no damping devices, a total of ten different conditions were examined. Tests with 1 ,
$2,3,5$, and 7 brushes were conducted both with and without tension in the line.

3.2.2 Wool Swab Dampers

Figure 10 shows a wool swab damper with a 1.0 inch diameter, a total length of 3 inches and a weight of 7.1 grams. The wool swab is manufactured by Omark Industries, Onalaska, Wisconsin 54650 with a US patent 415838 and an inventory control number 076683422187. It has a threaded piece at one end with a twisted wire attached to it to which the wool swab is attached. The aluminum piece is 0.75 inches long while the wool swab has a length of 2.125 inches. This type of brush is commonly used for cleaning 12 gauge shotguns. The dampers are mounted inside the tubular member as shown in Figures 6 and 7. Tests were carried out using 1, 2, 3, 5, and 7 equidistantly spaced wool swab dampers.

3.2.3 Silly Putty in Chamber Dampers

The final device examined was the "silly putty" in chamber damper shown in Figure 11. It consists of a sphere approximately 0.75 inches in diameter made from silly putty placed inside a hollow cylindrical chamber. Silly putty is a trade name for an elasto-plastic material commonly used as a children's toy. It is manufactured by Binney and Smith, Inc., Easton, PA 18042, with an inventory control number of 07166208006 . The chamber is made from a 1.0 in. long piece of a "Bristole Pipe" (PVC-1120, Schedule 40, ASTM-D-1785, nominal 1 inch pipe) having an original outer diameter of 1.058 in . and a wall thickness of 0.15 in . Since the damping effect was assumed to be provided by the silly putty, two steps were taken to reduce the mass of the damper thereby improving its efficiency. First, the inside diameter is increased by machining it to 0.914 in. resulting in a wall thickness of 0.07
in. Its weight is further reduced by drilling a total of seven 0.25 in . diameter holes around its periphery half-way from its ends. The silly putty is held inside the chamber by means of a plastic wrap ("Saran Wrap") stretched over the ends of the chamber and held in place with tape. The silly putty is then free to bounce around inside the chamber. The total weight of the damper including the silly putty, PCV chamber, and plastic wrap is 7.4 gms. The dampers are mounted inside the tubular member as shown in Figures 6 and 7. Tests were conducted with a nominal tension in the spring and with no tension in the spring using $1,2,3,5$ and 7 equidistant silly putty in chamber dampers. An additional test was performed with 11 equidistant dampers and a nominal tension in the spring.

3.3 Test Setup and Procedures

The instrumentation used in the tests consisted of a proximity probe, harmonic vibration devices and a deflection-time plotter. This section summarizes the test setup and procedures followed for all the experiments included in this report.

Figure 12 shows a schematic of the member natural vibration test setup. A weight, $W=7.9 \mathrm{lb}$. was suspended at the member midspan by means of a cord, causing a total midspan deflection of $5 / 32$ in. To induce natural vibration, the cord was cut with a pair of scissors, thereby releasing the member. The time dependent deflection at member midspan is recorded by means of a proximity probe shown in Figure 13, and connected to a deflection-time plotter.

Figure 14 shows the member forced vibration setup, a schematic of which is shown in Figure 15. Forced vibration of the specimen was obtained using a vibrator (Model 203-25-DC) with an oscillator (Model TPO-25). The
vibrator applies a forcing function of the type:
$F(t)=F_{0} \cos (\Omega t)$
(21).
in which $F_{0}=4 \mathrm{lb} ., t=$ time, and $\Omega=$ frequency of the forcing function. The applied frequency may be controlled using the oscillator.

The forcing function $F(t)$ is transmitted from the vibrator to the tubular member through a fabricated vibrator connector as indicated in Figure 14. The details of this mechanical connector are shown in Figure 16. It consists of three main segments $P Q, Q R$ and $R U$ interconnected at Q and R by means of pins. End P is connected to the vibrator. The end U is connected to the lower part of a metal hose clamp provided around the tubular member at midspan as indicated in Figure 14. The parts $Q R$ and $R U$ can be disengaged at R by pulling out the pin RS instantaneously in the RS direction as indicated by the arrow at S. A string attached at S is used to pull out the pin. Once the pin is pulled, the arm $Q R$ drops freely and the beam is free to vibrate without constraints. Both joints Q and R are well lubricated to reduce friction. The vibrator connector in the engaged and the disengaged positions is shown in Figures 17 (a) and 17 (b), respectively. A record is made of the deflection-time response of the member once the forcing function, $F(t)$, is removed.

3.4 Test Results and Discussion

In this section, the results from the member natural and forced vibration tests are presented and discussed.

3.4.1 Natural Vibration

All passive damping concepts were tested with natural flexural member vibration caused by releasing a weight at midspan as explained in Section 3.3. The initial midspan deflection, Δ_{0}, due to the suspended weight is
0.1563 in. A summary of the test results for the tubular member with no dampers as well as with wool swab, copper brush, and silly putty in chamber dampers is given in Table 1. The number of dampers, the total weight of the damping assembly, the damping ratio and the damping efficiency index are listed for each passive damping assembly. The logarithmic decrement method, as described in Reference 8 , was used with the experimentally obtained deflection versus time. plots to obtain the damping ratio.

The calculation of the damping ratio for the natural vibration tests was obtained using the first sixteen cycles and reading the amplitudes directly from the experimental deflection versus time plots. Each ζ value in Table 1 was then obtained by taking the average results of three tests for each combination of damping devices.

The efficiency index is defined (Reference 1 and 2):

$$
\begin{equation*}
\eta=\frac{\zeta-\zeta_{0}}{M_{d}} \tag{22}
\end{equation*}
$$

in which ζ is the damping ratio with the damping devices, ζ_{0} is the damping ratio in the absence of any passive damping device, and M_{d} is the total mass of the damping assembly.

The natural frequency from all of the experiments was found to be 8.4 Hz . The deflection versus time plots referenced in this section are obtained using the average ζ value and natural frequency from the experiments, and the following $\Delta-t$ relationship (Reference 1). $\Delta=\Delta_{0} e^{-\zeta \omega_{t}}\left(\frac{\omega \zeta}{\omega_{d}} \sin \omega_{d} t+\cos \omega_{d} t\right)$
The damped circular frequency, ω_{d}, is given by:
$\omega_{d}=\omega \sqrt{1-\zeta^{2}}$
The details including the listing of a computer program utilizing Equation

23 to produce a deflection versus time plot are given in Reference 1. A baseline plot of deflection versus time for the member with no dampers is shown in Figure 18.
3.4.1.1 Copper Brush Dampers

For the copper brush dampers the maximum $\bar{\zeta}=0.0131$ is obtained with an assembly of three damping devices. This assembly produces the maximum $\eta=$ 16.72 in/lb-sec ${ }^{2}$. Figure 19 shows the corresponding average $\Delta-t$ plot for a 10 second duration. Figure 20 shows the effect of the three copper brushes on the deflection time envelopes. The vertical ordinate in this figure is designated by Δ_{e} to indicate that the figure represents the envelopes rather than the complete $\Delta-t$ relationship. The damping ratios from the experiments are given in Table $2(a)$. In addition to the test conducted as described in Section 3.3 , a series of tests were made with no tension in the damping assembly. These tests, conducted with $1,2,3,5$ and 7 devices in the specimen showed no significant increase in member damping regardless of the number of devices used. The results are summarized in Table 2(b). One plausible explanation for this is as follows. The outer diameter of the copper brush is less than the inside diameter of the member. When there is no tension in the damping assembly, the devices are free to bounce inside the specimen. Because the vibrations are relatively small and the natural frequency low, the assembly with no tension has a tendency to move with the specimen, bouncing slightly inside the member. Due to the relatively negligible mass of the damper as compared to the member this nearly coincident movement produces minimal damping of the vibration. With a slight tension in the assembly, it can have its own natural frequency, different from the specimen. As a result, when vibration of the specimen is
induced, the impact of the damping assembly with the side of the tube sets the assembly in motion. Two types of motion then contribute to the damping. First, because of the difference in natural frequency of vibration impact of the dampers against the inside of the tubular member acts to damp the vibration. Secondly, the frictional interaction between the dampers and the member inside surface takes place while the dampers vibrate both in plane but out of phase, and axially. When the number of dampers is increased beyond three with nominal tension, the damping ratio decreases.

3.4.1.2 Wool Swab Dampers

For the wool swab dampers the maximum $\zeta=0.0105$ was obtained with an assembly of three dampers resulting in an efficiency of $9.05 \mathrm{in} / 1 \mathrm{~b}-\mathrm{sec}^{2}$. The maximum $\eta=12.34$ was obtained with a single damper assembly yielding a damping ratio of 0.0099 . Figures 21 and 22 represent the $\Delta-t$ plots for the member with three, and one wool swab damper assemblies, respectively for a 10 second duration. Figures 23 and 24 show the effects of these damping assemblies on the deflection-time envelopes. The damping ratio increased as the number of dampers was increased from one to three. Increasing the number of devices beyond three resulted in a decrease in both damping ratio and efficiency. The small negative efficiency noted for seven devices can be taken as practically zero. It was found that a variation in the method of attachment of the assembly to test specimen from concentric to an eccentric connection had no significant effect on the resulting damping ratio. The results are given in Tables $3(a)$ and $3(b)$.

3.4.1.3 Silly Putty in Chambers Dampers

For silly putty in chambers dampers, the maximum $\zeta_{\zeta}=0.0115$ was
obtained with an assembly of three dampers resulting in a $\eta=15.73 \mathrm{in} / 1 \mathrm{~b}$ -
$\sec ^{2}$, whereas the maximum $\eta=21.35 \mathrm{in} / \mathrm{lb}-\mathrm{sec}^{2}$ was obtained with an assembly of two dampers corresponding to $\zeta=0.0113$. Figures 25 and 26 represent the $\Delta-t$ plots for the member with three and two silly putty in chamber damper assemblies, respectively, for 10 second duration. Figures 27 and 28 show the effects of these damping assemblies on the deflection-time envelopes. The damping ratio was found to increase as the number of dampers was increased from one to three. Increasing the number of dampers beyond three resulted in a decrease of both damping ratio and efficiency. The tests conducted with no tension in the assembly showed a slight increase in damping ratio up to the three damper assembly. An increase in the number of dampers beyond three with no tension on the assembly showed no increase in damping ratio above the baseline damping ratio for the empty member. The results are given in Tables 4 (a) and $4(b)$. Of all the passive damping devices tested in this study, the assembly of three silly putty in chamber dampers was found to be the most efficient. Therefore, these dampers were chosen for further study under forced harmonic vibration.

3.5 Forced Then Free Vibration

It was discovered during testing that the vibration employed for the forced vibration tests allowed only a limited amount of travel. This meant that the deflection of the member at the location where the vibrator was attached was limited to what the vibrator would allow. Nevertheless, forced vibration tests were conducted on the individual member since it was not known initially whether or not the dynamic deflection would exceed the vibrator capacity. The results presented later in this section indicated that the vibrator constrained the member deflection for a certain range of forcing function frequencies including that which would otherwise have
constituted a resonance condition. This limitation must be taken into account when evaluating the performance of the dampers on an individual member.
3.5.1.1 Silly Putty in Chamber Dampers

The results of the experimental study of the member under forced then free vibration are summarized in Table 5. Tests were conducted with no dampers, and 1,2 , and 3 dampers inside the member. Each of these assemblies was subjected to a force of 4 lb . at the member midspan, at frequencies of $2,5,7$, and 9 Hz , corresponding to Ω / ω_{n} ratios of 0.238 , $0.596,0.834$, and 1.073 , respectively. An additional test was conducted on the empty member and the 3 damper assembly using a frequency of $12 \mathrm{~Hz}\left(\Omega / \omega_{n}\right.$ $=1.430$). The experimental results are shown in Figures 29 through 32. The free vibration part of the deflection-time graph is obtained by disengaging the forcing function from the member midspan as described in Section 3.3. The constrained dynamic deflection amplitude, Δ_{D}^{*}, and its dimensionless value, $\Delta^{*}{ }_{D} / \Delta_{S}$, where Δ_{S} is the calculated static midspan deflection due to a 4 lb. load, are listed in Table 5. The constrained dynamic deflection amplitude is the measured amplitude of the initial constrained force part of the deflection-time plots. Also listed in Table 5 are the maximum initial free vibration amplitudes, Δ_{F}, for each assembly and frequency considered. Two dimensionless quantities are derived from this value as Δ_{F} / Δ_{S} and $\Delta_{F} / \Delta_{D}^{*}$. The data in Table 5 shows that the $\Delta_{\mathrm{D}}^{*} / \Delta_{S}$ values range from 0.59 to 0.95. For all the cases, the maximum value was observed for an applied force frequency of 5 Hz . It was also found that the Δ_{F} / Δ_{S} and Δ_{F} / Δ^{*} d ratios were gradually increasing for increasing forcing function frequencies. One important consequence of the deflection constraint imposed
by the vibrator is that no resonance phenomenon could be produced in the vicinity of 8.4 Hz . The average damping ratios were obtained from the free vibration part of the deflection-time curves and are listed in Table 5. As seen from this data, the single silly putty in chamber damper configuration provides the maximum decrease in free vibration amplitude. Another important observation to be made is that the ζ values in Table 5 are significantly less than the corresponding values for the same damping assemblies given in Table 1. This is attributable to the dependence of the damping ratio on the initial velocity which is considerably greater for the results reported in Table 5 than for those in Table 1.

3.5 Comparison of Damping Efficiencies

In Section 3.4, the efficiency index based on Equation 22 was computed for each damping device. The average values of η and the associated damping assembly weight for natural vibration were presented in Table 1. Figure 33 shows the curves between η and the weight of dampers used in the natural vibration tests for various damping concepts. The silly putty in chamber dampers provided the most efficienct damping of the member. It is worth noting that all. of the curves have ascending and descending portions which define the maximum attainable damping efficiency. In general, an increase in damping assembly weight beyond 50 grams results in a decline in efficiency.

Figure 34 shows the relationships between the damping efficiency and the number of damping devices for natural vibration using all three concepts. These curves also show that, in general, an assembly of more than three damping devices results in a decline in efficiency. This may indicate that the first and second mode shapes are dominating the dynamic response.

By applying the dampers to locations in the vicinity of maximum deflection for these mode shapes, the maximum efficiency was realized. Any increase in the number of dampers beyond three adds mass to the system, and is associated with a decrease in damping.

The average damping efficiency indices for the forced then free vibration tests for 1,2 , and 3 silly putty in chamber dampers are given in Table 5. The maximum efficiency was obtained using one silly putty in chamber damper and a forcing function frequency of 5 Hz . No correlation between the maximum efficiency and the initial vibration amplitude was observed. However, the maximum average damping ratio for each device was found to occur near the theoretical resonance of the member (between 7 and 9 Hz) in spite of the inability of the apparatus to allow the resonance to occur.

4. NUMERICAL STUDY

4.1 Natural Vibration

4.1.1 Finite Element versus Experiment

The formulation and solution algorithmn using Newmark's method for computing the dynamic response of a beam was given in Section 2 . In this section, a comparison is made of the deflection versus time relations from this finite element analysis to those obtained experimentally.

A preliminary study showed that for $\Delta t=0.0001 \mathrm{sec} . ;$ the central difference formulation described in Section 2.3 gave precisely the same results as Newmark's method. Since Newmark's method provides accurate results even with larger time steps, it was used to produce Figure 35 through 43. Figure 35 shows a comparison of the finite element and experimental Δ-t plots for the member with no dampers. The solid line is the finite element solution and the dashed line is the experimental curve using a frequency of 8.4 Hz and the average damping ratios from Table 1. Figure 36 shows a comparison of the finite element and experimental Δ-t plots for the member with 3 copper brush dampers. In both of these curves, it can be seen that the period of the vibration obtained using finite elements is exagerated by approximately 32%. However, the amplitudes of the vibration are accurate to within 5%.

4.1.2 Finite Element versus Finite-Difference

The $\Delta-t$ curves representing the finite-difference solution are obtained using the computer program developed in Reference 2. Figures 37 and 38 show the comparison of the finite element and the finite-difference solutions for the member with no dampers and three copper brush dampers, respectively. The data for these plots is obtained from Table 1 . As indicated in these
figures, the difference in the period calculated by these two methods is approximately 26\%. However, the amplitudes of the vibration from the two analyses are within 3% of each other. Figure 39 is a comparison of the finite-element and finite difference solutions for a simply supported beam $\left(k_{1}=k_{2}=0\right)$. Similar correlation is also observed for a fixed end beam $\left(k_{1}=k_{2}=\infty\right)$. In the presence of end connections of intermediate fixity, the two analyses provide somewhat differing results.

4.2 Forced then Free Vibration

In this section, curves obtained from the finite element solution for various forcing function frequencies are given. Also, a comparison of the theoretical solution to experimental results is made for both the member with no dampers and the member with one silly putty in chamber damper at a forcing function frequency of 2 Hz .

Figure 40 shows the response using Newmark's method for a beam with no dampers and subjected to a 4 lb . force at a frequency of 2 Hz . After 1 second, the forcing function is removed and the beam is allowed to vibrate freely. Figure 41 shows the response of the same system with a forcing function frequency of 6 Hz . This frequency corresponds to a frequency ratio $\Omega / \omega_{\mathrm{fe}}$ of 0.95 , where $\omega_{\mathrm{fe}}=6.3 \mathrm{~Hz}$ is the natural frequency of the beam from the finite element solution. Clearly, this represents a nearly resonant condition as expected. After 1 second, the forcing function is removed and the member is allowed to vibrate freely.

Figures 42 shows the finite element and experimental curves for the member with no dampers and subjected to a 4.0 lb . force at a frequency of 2 Hz . Although the forced vibration portions of the two curves at $\Omega=2 \mathrm{~Hz}$ are quite similar, the free vibration amplitudes differ significantly. The
reasons for this difference may be as follows. In the experiment, the forcing function was terminated by pulling the pin RS from the vibrator connector shown in Figure 16. During the tiny time interval in which the pin was being pulled out, the contact and frictional forces involved in disengaging the segment $Q R$ from $R U$ were unintentionally transferred to the members thereby retarding its initial amplitude in the free vibration range. Consequently, the ensuing envelope of the experimental free vibration $\Delta-t$ curve is considerably narrower than the theoretical one. Similar effects are observed in Figure 43 which shows the finite element and experimental results when one silly putty in chamber damper is used.

At larger Ω values such as those of the order of 6 Hz , the $\Delta-t$ relations from the finite element analysis do not match the experimental ones even in the forced vibration range. This is primarily due to the constraints imposed by the vibrator on the maximum member deflecting as explained earlier in Section 3.5.

4.3 Finite Element Analysis for Forced Vibration

As mentioned earlier, the vibrator used in the experimental study constrained the motion of the member in the presence of a forcing function. As a result, the actual effect of passing damping could not be observed for this condition. Therefore, a numerical study was conducted to examine the effect of passive damping in the presence of the forcing function. In this section, the theoretical results showing both the extent of damping which would occur during the forced vibration and the effect of the dampers on the deflection-time envelopes are presented and discussed. Figure 44 shows the theoretical dynamic magnification factor ($D M F$), Δ_{D} / Δ_{S}, versus the frequency ratio Ω / ω_{n} for damping ratios of $0.0094,0.0131$ and 0.50 . The first two
values of the damping ratios were obtained from the member tests with no dampers, and 3 copper brush dampers, respectively. As can be seen in this figure, the copper brush dampers do not change the DMF appreciably for nonresonance frequency ratios. However, the dampers reduce the DMF by approximately 7\% at resonance.

Figure 45 shows the deflection versus time relationship for the member with no dampers and with three copper brush dampers, with a forcing function frequency of $6.35 \mathrm{~Hz}\left(\Omega / \omega_{\mathrm{n}}=1.0\right)$ for one second, and allowed to vibrate freely thereafter. These curves show that the passive damping results in a member amplitude reduction in the forced vibration range, however, its most beneficial effect occurs during the free vibration. After 3 seconds of free vibration, the amplitudes of the member with dampers are approximately 40% less than those corresponding to the empty member.

5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The following conclusions are drawn from the research conducted herein:

1. The silly putty in chamber concept provides the maximum passive damping efficiency under member natural vibration, as compared to the copper brush or the wool swab concepts.
2. The copper brush concept provides the largest damping ratio of the system under natural vibration.
3. Due to the limitation of the vibrator used, the effectiveness of the passive damping concepts could not be evaluated until the forcing function was disengaged.
4. Frictional and contact forces acting on the member during disengagement from the vibration apparatus caused a reduction of the ensuing free vibration member amplitude.
5. The theoretical results indicate that in the presence of a forcing function, the passive damping devices provide the most effective damping in the vicinity of the resonant frequency.
6. The theoretical results show that passive dampers are considerably more effective under member natural vibration than during forced vibration.
7. Under natural vibration, the finite element solution results in periods which are nearly 30 percent greater than the experimental ones. However, amplitudes are reasonably accurate. The accuracy of the results is improved when the member ends are pinned or fixed.

5.2 Future Research

The most successful passive damping concepts identified herein should be examined using forced vibration equipment which would allow investigation of their effectiveness at or near resonance. Attempts should be made to identify a means of disengaging an applied force without adversely affecting the dynamic response of the member. These tests should be conducted on both individual members and structure sub-assemblies.

REFERENCES

1. Razzaq, Z., El-Aridi, N.F., Passive Damping Concepts for Low Frequency Tubular Members. Progress Report submitted to NASA Langley Research Center Under Research Grant NAG-1-336, NASA Technical Monitor: Harold G. Bush, August 1986 .
2. Razzaq, Z., Ekhelikar, R.K., Passive Damping Concepts for Slender Columns in Space Structures. Progress Report Submitted to NASA Langley Research Center Under Research Grant NAG-1-336, May 1985.
3. Razzaq, Z., Passive Damping concepts for Slender Columns in Space Structures. Progress Report submitted to NASA Langley Research Center Under Research Grant NAG-1-336, February 1985.
4. Razzaq, 2., Passive Damping concepts for Slender Columns in Space Structures. Progress report submitted to NASA Langley Research Center Under Research Grant NAG-1-336, August 1984.
5. Razzaq, Z., Voland, R.T., Bush, H.G., and Mikalas, M.M., Jr., Stability, Vibration and Passive Damping of Partially Restrained Imperfect Columns. NASA Technical Memorandum 85697, October 1983.
6. Cook, R.D., Concepts and Applications of Finite Element Analysis, 2nd Ed., John Wiley and Sons, Inc., New York, 1974.
7. Paz, M., Structural Dynamics: Theory and Computations, 2nd Ed., Van Nortrand Reinhold, New York, 1985.
8. Clough, R.W., Pension, Jr., Dynamics of Structures, McGraw-Hill Book Co., New York, 1975.

Table 1. Member natural vibration test results for copper brush, wood swab, and silly putty in chamber dampers.

PASSIVE DAMPING CONCEPT	NUMBER OF DAMPERS	WEIGHT OF DAMPING ASSEMBLY (GM)	AVERAGE DAMPING RATIO ζ	$\begin{gathered} \text { DAMPING } \\ \text { EFFICIENCY } \\ \text { INDEX } \\ \text { (IN/LB. }- \text { SEC }^{2} \text {) } \end{gathered}$
No Dampers		0.00	0.0094	0.00
Copper	1	13.0	0.0098	- 5.39
Brush	2	26.0	0.0107	8.76
Dampers	3	39.0	0.0131	16.72
	5	65.0	0.0129	9.44
	7	91.0	0.0097	0.48
Wool	1	7.10	0.0099	12.34
Swab	2	14.20	0.0102	9.87
Dampers	3	21.30	0.0105	9.05
	5	35.50	0.0101	3.46
	7	49.70	0.0091	-0.99
Silly	1	7.8	0.0100	13.48
Putty	2	15.6	0.0113	21.35
in	3	23.4	0.0115	15.73
Chamber	5	39.0	0.0109	6.74
Dampers	7	54.6	0.0097	0.96
	11	85.8	0.0094	0.00

Table 2(a): Damping ratios from natural vibration tests with copper brushes and no cord tension.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0097	0.0095	0.0095	0.0096
2	0.0097	0.0097	0.0097	0.0097
3	0.0098	0.0096	0.0096	0.0097
5	0.0094	0.0096	0.0094	0.0095
7	0.0095	0.0095	0.0096	0.0095

Table 2(b). Damping ratios from natural vibration tests with copper brushes and nominal cord tension.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0097	0.0102	0.0096	0.0098
2	0.0105	0.0109	0.0108	0.0107
3	0.0133	0.0128	0.0131	0.0131
5	0.0129	0.0131	0.0128	0.0129
7	0.0096	0.0098	0.0095	0.0096

Table 3(a): Damping ratios for natural vibration tests with wool brushes and concentric cord support.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0098	0.0097	0.0098	0.0098
2	0.0100	0.0098	0.0101	0.0100
3	0.0107	0.0108	0.0101	0.0105
5	0.0096	0.0100	0.0097	0.0098
7	0.0094	0.0094	0.0094	0.0094

Table 3(b). Damping ratios for natural vibration tests with wool brushes and eccentric cord support.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0099	0.0099	0.0098	0.0099
2	0.0103	0.0101	0.0101	0.0102
3	0.0105	0.0105	0.0105	0.0105
5	0.0099	0.0102	0.0102	0.0101
7	0.0093	0.0090	0.0090	0.0091

Table 4(a). Damping ratios for natural vibration tests with silly putty and no cord tension.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0096	0.0097	0.0096	0.0096
2	0.0099	0.0099	0.0102	0.0100
3	0.0101	0.0101	0.0101	0.0101
5	0.0095	0.0095	0.0093	0.0094
7	0.0094	0.0092	0.0096	0.0094

Table 4(b). Damping ratios for natural vibration tests with silly putty and nominal cord tension.

Number of Devices	ζ_{1}	ζ_{2}	ζ_{3}	$\zeta_{\text {AVG }}$
1	0.0104	0.0096	0.0100	0.0100
2	0.0112	0.0115	0.0113	0.0113
3	0.0112	0.0115	0.0117	0.0115
5	0.0109	0.0109	0.0109	0.0109
7	0.0096	0.0099	0.0096	0.0097
11	0.0094	0.0094	0.0094	0.0094

Table 5. Member forced then free vibration test results for silly putty in chamber dampers.

Passive Damping Concept	Forcing Function Frequency (Hz)	Constrained Dynamic Amplitudes $\Delta_{D}{ }^{*}$ in.	$\Delta_{\mathrm{D}}{ }^{*} \Delta_{\mathrm{s}}$	Initial Free Vibration Amplitude $\Delta_{\mathrm{F}} \max$ in	$\Delta_{\mathrm{F}} / \Delta_{\mathrm{S}}$	$\Delta_{T} / \Delta *_{D}$	Åverage Damping Ratio ζ Avg.	η
No Dampers	2	0.067	0.84	0.030	0.38	0.45	0.0043	$!$
	5	0.073	0.92	0.067	0.84	0.91	0.0072	1
	7	0.070	0.88	0.077	0.97	1.10	0.0073	1
	9	0.067	0.84	0.082	1.03	1.23	0.0069	-
	12	0.047	0.59	0.082	1.03	1.75	0.0025	1
$\begin{aligned} & 1 \text { Silly } \\ & \text { Putty } \\ & \text { in } \\ & \text { Chamber } \\ & \text { Damper } \end{aligned}$	2	0.062	0.78	0.030	0.38	0.48	0.0058	33.7
	5	0.073	0.92	0.063	0.80	0.86	0.0089	38.2
	7	0.067	0.84	0.070	0.88	1.05	0.0089	36.0
	9	0.067	0.84	0.073	0.92	1.10	0.0080	24.17
$\begin{aligned} & 2 \text { Silly } \\ & \text { Putty } \\ & \text { in } \\ & \text { Chamber } \\ & \text { Damper } \end{aligned}$	2	0.065	0.82	0.030	0.39	0.48	0.0049	6.7
	5	0.075	0.95	0.060	0.76	0.80	0.0069	(-3.4)
	7	0.067	0.84	0.053	0.67	0.80	0.0076	3.4
	9	0.065	0.82	0.083	1.05	1.28	0.0080	12.4
$\begin{aligned} & 3 \text { Silly } \\ & \text { Putty } \\ & \text { in } \\ & \text { Chamben } \\ & \text { Damper } \end{aligned}$	2	0.063	0.80	0.030	0.38	0.47	0.0057	10.5
	5	0.075	0.95	0.057	0.71	0.76	0.0055	(-12.7)
	7	0.068	0.86	0.077	0.97	1.12	0.0064	(-6.7)
	9	0.068	0.86	0.090	1.14	1.32	0.0082	9.7
	12	0.047	0.59	0.082	1.03	1.75	0.0036	8.2

FIGURES:

Cross Section

Figure 1. Schematic of tubular member

Figure 2. Example of finite element model for the beam.

Figure 3. Some end connection details

ORIGNAN PAGE IS
 OR POOR QUALITY

Figure 4. Member end connection

ORIGINAL PAGE IS
 OF POOR QUALITY

Figure 5. Copper brush damper

Figure 6. Schematic of attachments for passive

Figure 7. Schematic for spacing of passive dampers

ORIGINAL PAGE IS
 OE POOR QUALITY

Figure 8. Helical spring attachment at end e

ORIGINAL PAGE IS
 OF POOR QUALITY

Figure 9. Stretched helical spring at end e

ORIGINAL PAGE IS
OF POOR QUALITY.

Figure 10. Wool swab damper

ORIGINAL PAGE IS OF. POOR QUALITY.

Figure 11. Silly putty in chamber damper

Figure 12. Schematic of member natural vibration setup

ORIGINAL PAGE IS

OF POOR QUALITY

Figure 13. Proximity probe

ORIGINAL PAGE IS OF POOR QUALITY

Figure 14. Member forced vibration setup

Figure 15: Schematic of member forced vibration setup

Figure 16. Vibrator. connector details

(a) Vibrator connector in engaged position

(b) Disengaged vibrator connector

Figure 17 . Vibrator connector in engaged and disengaged positions

$<\sqrt{\underset{\sim}{Z}}$

$$
<\sqrt{\underset{\sim}{z}}
$$

$$
<^{W} \underset{H}{\mathrm{Z}}
$$

$\Delta^{\text {U }} \underset{\underset{y}{z}}{\text { z }}$

Figure 29. Experimental Δ-t plots for member "constrained" forced then free vibration with no dampers and frequencies of $2,5,7$ and 9 Hz .

Figure 30. Experimental $\Delta-t$ plot for member "constrained" forced then free vibration with 2 silly putty in chamber damper and forcing function frequencies of $2,5,7$ and 9 Hz .

Figure 31. Experimental Δ-t plot for member "constrained" forced then free vibration with 1 silly putty in chamber damper and forcing function frequencies of $2,5,7$ and 9 Hz .

Figure 32. Experimental $\Delta-t$ plots for member "constrained" forced then free vibration with 3 silly putty in chamber dampers and forcing function frequencies of $2,5,7$, and 9 Hz .

WEIGHT OF DAMPERS (gm) (ш6)

- $\varepsilon \varepsilon$ axnsṭ
0
N
$\stackrel{1}{-1}$
\pm
$\left(\operatorname{in} / 1 b-\sec ^{2}\right)$
5

$$
\begin{aligned}
& \text {...Silly Putty } \\
& \ldots \text { Wool Swab } \\
& \text {. Copper Brush }
\end{aligned}
$$

\triangleleft g

\triangleleft G
finite difference (8.0 Hz$)$
finite element (6.4 Hz) (

\triangleleft g

Figure
\triangleleft 家

\triangleleft 크

Theoretical curve with ideal disengagement.

Figure 42. Theoretical and experimental forced then free $\Delta-t$ plots for a $4.01 b$. force at 2 Hz for 1 second on member with one silly putty in chamber damper.

Figure 43. Theoretical and experimental forced then free $\Delta-t$ plots for $4.01 b$. force at 2 Hz for 1 second on member with no dampers.

Figure 44. Theoretical dynamic magnification factor versus Erequency ratio for damping ratios of $0.0094,0.0131$, and 0.50 .

APPENDICES

APPENDIX A

EXAMPLE OF FOUR ELEMENT BEAM STIFFNESS MATRIX
In this appendix the procedure used to assemble the beam stiffness matrix using a beam composed of four elements is presented.

The typical element stiffness matrices for Elements b and c as shown in Figure 2 are given as (Reference 6):
$[\mathrm{K}]_{\mathrm{b}, \mathrm{c}}=\left[\begin{array}{cccc}\frac{12 \mathrm{EI}}{\mathrm{L}^{3}} & \frac{6 \mathrm{EI}}{\mathrm{L}^{2}} & \frac{-12 E I}{\mathrm{~L}^{3}} & \frac{6 \mathrm{EI}}{\mathrm{L}^{2}} \\ \frac{4 \mathrm{EI}}{\mathrm{L}} & \frac{-6 \mathrm{EI}}{\mathrm{L}^{2}} & \frac{2 \mathrm{EI}}{\mathrm{L}^{2}} \\ \text { Symmetric } & \frac{12 \mathrm{EI}}{\mathrm{L}^{3}} & \frac{-6 \mathrm{EI}}{\mathrm{L}^{2}} \\ & & \frac{4 \mathrm{EI}}{\mathrm{L}}\end{array}\right]$

(A.1)

Since only planar motion is considered, axial effects are negligible and, therefore, not included in the element stiffness matrix.

Derivation of the stiffness matrix for Element a as shown in Figure 2 is as follows. The flexibility matrix for the element is given by:
$[F]=[H]^{t}[F]_{c 1}[H]+[F]_{m}+[F]_{c 2}$
in which $[\mathrm{H}]$ is the equilibrium matrix given by:
$[H]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & L \\ 0 & 0 & 1\end{array}\right]$
and $[F]_{c 1}$ represents the flexibility of the connection at end one, $[F]_{m}$ is the flexibility of the element itself and $[F]_{c 2}$ is the flexibility of the connection at end two. These are defined as follows:
$[F]_{c 1}=\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{L}{4 E I k}\end{array}\right]$
$[F]_{m}=\left[\begin{array}{ll}\frac{L^{3}}{3 E I} & \frac{L^{2}}{2 E I} \\ \frac{L^{2}}{2 E I} & \frac{L}{E I}\end{array}\right]$
$[F]_{c 2}=\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{L}{4 \mathrm{EI}}\end{array}\right]$
(A.5)
(A.6)
therefore the flexibility matrix in full can be written as
$[F]==\left[\begin{array}{ll}\frac{L^{3}}{E I}\left(\frac{1}{3}+\frac{1}{4 k}\right) & \frac{L^{2}}{E I}\left(\frac{1}{2}+\frac{1}{4 k}\right) \\ \frac{L^{2}}{E I}\left(\frac{1}{2}+\frac{1}{4 k}\right) & \frac{L}{E I}\left(1+\frac{1}{4 k}\right)\end{array}\right]$
(A.7)

The inverse of [F] is given by:
$\left[K_{22}\right]_{a}=[F]^{-1}=\left[\begin{array}{lll}\frac{3 E I}{L^{3}} \frac{(4 k+1)}{(k+1)} & \frac{-3 E I}{L^{2}} \frac{(2 k+1)}{(k+1)} \\ \frac{-3 E I}{L^{2}} & \frac{(2 k+1)}{(k+1)} & \frac{E I}{L}\end{array} \frac{(4 k+3)}{(k+1)}\right]$
The other stiffness matrices now follow from:

$$
\left.\begin{array}{l}
{\left[K_{11}\right]_{a}=} \tag{A.9}\\
{[H]\left[K_{22}\right][H]^{t}=\left[\begin{array}{lll}
\frac{3 E I}{L^{3}} \frac{(4 k+1)}{(k+1)} & \frac{3 E I}{L^{2}} \frac{(2 k)}{(k+1)} \\
\frac{3 E I}{L^{2}} \frac{(2 k)}{(k+1)} & \frac{E I}{L} \frac{(4 k)}{(k+1)}
\end{array}\right]}
\end{array}\right]
$$

$\left.\begin{array}{l}{\left[K_{12}\right]_{a}=} \\ {\left[K_{21}\right]^{t}=-[H] \quad\left[K_{22}\right]=\left[\begin{array}{ll}\frac{-3 E I}{L^{3}} \frac{(4 k+1)}{(k+1)} & \frac{3 E I}{L^{2}} \frac{(2 k+1)}{(k+1)} \\ \frac{-3 E I}{L^{2}} \frac{(2 k)}{(k+1)} & \frac{E I}{L}\end{array} \frac{(2 k)}{(k+1)}\right.}\end{array}\right]$
Therefore, the total stiffness matrix for Element a is:

Similarly, Element d shown in Figure 2:
$\left[K_{22}\right]_{d}=\left[\left.\begin{array}{ll}\frac{3 E I}{L^{3}} \frac{(4 k+1)}{(1+k)} & \frac{-6 E I}{L^{2}} \frac{(k)}{(1+k)} \\ \frac{-6 E I}{L^{2}} \frac{(k)}{(1+k)} & \frac{4 E I}{L} \frac{(k)}{(1+k)}\end{array} \right\rvert\,\right.$
$\left[K_{11}\right]_{d}=$
[H$]\left[\mathrm{K}_{22}\right]_{\mathrm{d}}\left[\mathrm{H}^{\mathrm{t}}\right]=$
$\left[\begin{array}{ll}\frac{3 E I(4 k+1)}{L^{3}(1+k)} & \frac{3 E I}{L^{2}}(2 k+1) \\ \frac{3 E I}{L^{2}} \frac{(2 k+1)}{(1+k)} & \frac{E I}{L} \frac{(4 k+3)}{(1+k)}\end{array}\right]$

$$
c-2 \quad-87
$$

Using the above element matrices, the following global matrix is assembled:
$[K]=\left[\begin{array}{lllll}{\left[K_{11}\right]_{a}} & {\left[K_{22}\right]_{a}} & {[0]} & {[0],} & {[0]} \\ {\left[K_{21}\right]_{a}} & {\left[K_{22}\right]_{a}+\left[K_{11}\right]_{b}} & {\left[K_{12}\right]_{b}} & {[0]} & {[0]} \\ {[0]} & {\left[K_{21}\right]_{b}} & {\left[K_{22}\right]_{b}+\left[K_{11}\right]_{c}} & {\left[K_{12}\right]_{c}} & {[0]} \\ {[0]} & {[0]} & {\left[K_{21}\right]_{c}} & {\left[K_{22}\right]_{c}+\left[K_{11}\right]_{d}} & {\left[K_{12}\right]_{d}} \\ {[0]} & {[0]} & {[0]} & {\left[K_{21}\right]_{d}} & {\left[K_{22}\right]_{d}}\end{array}\right]$

This is an $\mathrm{n} \times \mathrm{n}$ matrix where $\mathrm{n}=2 \mathrm{~N}+2$, and $\mathrm{N}=$ the number of elements. The first two boundary conditions are enforced by putting 1.0 in the diagonal corresponding to the translational degrees of freedom at the supports and setting all other entries in that row and column equal to zero. The last two boundary conditions are accounted for in the derivation of the individual stiffness matrices.

Note that an adjustment to the stiffness matrix must be made when the
stiffness
case the diagonal ronal restraint at each end
support should be see corresponding to the rotatioproaches zero. For this should be set equal to unity.

APPENDIX B

COMPUTER PROGRAMS

As a part of this study, two computer programs were developed to solve the dynamic equilibrium matrix equation given in Chapter 2. A brief description of these programs along with their listings and sample outputs are given in this appendix.
B. 1 NEWMARK

This program is based on the analysis described in Section 2.2. A description of the required input data is given at the beginning of the program listing. Data is input by means of the data statements in lines 48 to 53 of the program listing. The output consists of the time in seconds and corresponding midspan deflection in inches.
B. 2 CENDIF

Program CENDIF is based on the analysis described in Section 2.3. Data input and output are the same on NEWMARK.

FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2


```
NEW00560
NEW00570
NEW00580
NEW00590
NEW00600
NEW00610
1059 FORMAT (/IX,'STIFFNESS -- ',D16.9)
WRITE \((2,1060)\) ZETA
1060 FORMAT (/1X,' DAMPING ---- ',D16.9)
WRITE \((2,1061)\) PO
1061 FORMAT (/IX,'FORCE ------ ', D16.9)
WRITE \((2,1062)\) OMEGA
1062 FORMAT (/1X,'FREQUENCY -- ',D16.9)
\(\mathrm{N}=2 \%\) NUMEL +2
WRITE \((2,176)\)
C WRITE \((2,177)\)
DO \(10 \quad 1=1, N\)
DO \(10 \mathrm{~J}=1, \mathrm{~N}\)
\(K(I, J)=0.0\)
\(K(1,1)=1000\)
\(K(N-1, N-1)=1000\)
\(K(2,2)=E * X \mid * 4, * K 1 /(H *(K)+1)\).
\(K(2,3)=(-1) * .3 . * E * X 1 * 2 . * K 1 /((H * * 2) *(K 1+1)\).
\(K(2,4)=E * X \mid * 2 . * K 1 /(H *(K 1+1)\).
\(K(3,2)=K(2,3)\)
\(K(3,3)=3 . * E * X 1 *(4 . * K 1+1) /.((H * * 3) *(K 1+1)\).
\(K(3,4)=(-3) * E * X 1 *.(2 . * K 1+1) /.((H * * 2) *(K 1+1)\).
\(K(4,2)=K(2,4)\)
\(K(4,3)=K(3,4)\)
\(K(4,4)=E * X 1 *(4 . * K 1+3) /.(H *(K 1+1)\).
\(K(N-3, N-3)=3 . * E * X 1 *(4 . * K 2+1) /.((H * * 3) *(K 2+1)\).
\(K(N-3, N-2)=(3) * E * X \mid. *(2 . * K 2+1) /.((H * * 2) *(K 2+1)\).
\(K(N-3, N)=6 . * E * X \mid * K 2 /((H * * 2) *(K 2+1)\).
\(K(N-2, N-3)=K(N-3, N-2)\)
\(K(N-2, N-2)=E * X 1 *(4 . * K 2+3) /.(H *(K 2+1)\).
\(K(N-2, N)=2 . * E * X \mid * K 2 /(H *(K 2+1)\).
\(K(N, N-3)=K(N-3, N)\)
\(K(N, N-2)=K(N-2, N)\)
\(K(N, N)=E * X 1 * 4, * K 2 /(H *(K 2+1)\).
\(\operatorname{KEL}(1,1)=12 . * E * X I /(H * * 3)\)
\(\operatorname{KEL}(1,2)=6 . * E * X I /(H * * 2)\)
\(\operatorname{KEL}(1,3)=(-1). * \operatorname{KEL}(1,1)\)
\(\operatorname{KEL}(1,4)=\operatorname{KEL}(1,2)\)
```

NEW00620
NEW00630
NEW00640
NEW00650
NEW00660
NEW00670
NEW00680
NEW00690
NEW00700
NEW00710
NEW00720
NEW00730
NEW00740
NEW00750
NEW00760
NEW00770
NEW00780
NEW00790
NEW00800
NEW00810
NEW00820
NEW00830
NEW00840
NEW00850
NEW00860
NEW00870
NEW00880
NEW00890
NEW00900
NEWOO910
NEW00920
NEW00930
NEWOO940
NEW00950
NEWOO960
NEW00970
NEW00980
NEW00990
NEWO 1000
NEWOIO10
NEWO 1020
NEWO 1030
NEWO 1040
NEWO 1050
NEWO 1060
NEWO 1070
NEWO 1080
NEWO 1090
NEWO1100

```
    KEL (2,2) = 4.*E*XI/(H)
        NEWOIl10
    KEL (2,3) = (-1.)*KEL (1,2)
    KEL (2,4) = KEL (2,2)/2.
    KEL (3,3) = KEL (1,1)
    KEL (3,4) = KEL (2,3)
    KEL(4,4)=KEL (2,2)
    IF(K(2,2).LE.0.00001) K (2,2)=1.0
    IF (K (N,N).LE.0.00001) K (N,N)=1.0
    DO 30 1=1,4
DO 30 J=1,4
IF(J.GT.I)KEL (J,I) =KEL (I,J)
DO 50 JK =2,NUMEL-1
| |=JK*2-2
JJ=11
00 45 1=1,4
DO 40 J=1,4
K(II+I,JJ+J)=K(II+I,JJ+J)+KEL(I,J)
CONTINUE
45 CONTINUE
5 0 ~ C O N T I N U E ~
66 DO 75 l=1,N
    DO 70 J=1,N
    M(I,J)=0.0
    C (I,J) =0.0
    CONTINUE
    CONTINUE
    M(1,1)=39.
    M(2,2)=H**2
    M(N-1,N-1)=39.
    M(N,N)=H**2
    DO 80 l=3,N-3,2
    J=1+1
M(1,1)=78.
M(J,J)=2.* (H**2)
CONTINUE
DO 90 I=1,N
M(1,1)=M(1,1)*(ROW*H/78.)
CALL JACOBI (K,M,N,IFPR,X,EIGV)
DO 95 I=1,N
95 DAMRAT (1)=ZETA
CALL DAMP(N,EIGV,X,M, DAMRAT,C)
PRINT*,'IN START'
DO 300 1=1,N
```

NEWOII 20
NEWO 1130
NEWOI 140
NEWO 1150
NEWOI160
NEWO 1170
NEWOI 180
NEWOI 190
NEWO 1200
NEWO 1210
NEWO 1220
NEWO 1230
NEWO 1240
NEWO 1250
NEWO 1260
NEWO 1270
NEWOI 280
NEWO 1290
NEWO 1300
NEWO 1310
NEWO 1320
NEWO 1330
NEWO 1340
NEWO 1350
NEWO 1360
NEWO 1370
NEWO 1380
NEWO 1390
NEWO 1400
NEWO 1410
NEWO 1420
NEWO 1430
NEWO 1440
NEWO 1450
NEWO 1460
NEWO 1470
NEWO 1480
NEWO 1490
NEWO 1500
NEWO 1510
NEWO 1520
NEWO 1530
NEWO 1540
NEWO 1550
NEWO 1560
NEWO 1570
NEWO 1580
NEWO 1590
NEWO 1600
NEWO 1610
NEWO 1620
NEWO 1630
NEWO 1640
NEWO 1650

```
300
    RT (I) =0.0
    PI=ACOS (-1.0)
    RT (N/2) =PO* (DCOS (OMEGA*TIME))
    CALL INVERT(M,MINV,N)
    DO 333 1=1,NUMEL+1
    DUM1=K1*L/(4*P|*E*XI)
    Z=P|*H* (I-1)/L
    UT (2*I)=(DELO/(1.+DUMI*2))*((PI/L*DCOS (Z))+(DUMI*2*PI/L*DSIN (2*Z)
    E))
    UT (2*1-1) = (DELO/(1.+DUM1*2))*(DSIN (Z)+DUM1* (1.-DCOS (2*Z)))
333 CONTINUE
    DO 302 1=1,N
    SUM=0.0
    DO 301 J=1,N
301 SUM=SUM+K (I,J)*UT (J)*(-1.)
302 DUM(1)=SUM
    DO 306 1=1,N
    SUM=0.0
    DO 305 J=1,N
305 SUM=SUM+MINV (1,J) *DUM (J)
306 UDDT (1)=SUM
    DO 310 1=1,N
    UDT (1) =0.0
    CONTINUE
    PRINT*,'OUT START'
    DO 320 1=1,N
    DO 320 J=1,N
    Cl (1,J)=K (I,J) +GAMA*C (I,J) /(BETA*TS)+M(1,J)/(BETA* (TS**2))
    CALL INVERT(C1,C2,N)
    DO 122 I=1,N
    C3(1)= (GAMA/ (BETA*TS))*UT (1) +(GAMA/BETA-1.0) *UDT (1) +TS* ((GAMA/ (BE
    \varepsilonTA*2.))-1.0)*UDDT (1)
        C4 (1) =UT (1)/(BETA* (TS**2))+UUT (1)/(BETA*TS) + ((1./ (2.*BETA)) - 1.0) *UNEWO2050
    EDDT (I)
122 CONTINUE
    DO 130 1=1,N
    SUM=0.0
    DO 125 J=1,N
125 SUM=SUM+C (1,J)*C3(J)
130 C5(1)=SUM
    DO 410 1=1,N
    SUM=0.0
    DO 400 J=1,N
400 SUM=SUM+M (I,J)*C4 (J)
410 C6(1)=SUM
N
NEWO2190
NEWO2200
```

FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2

```
DO \(420 \quad 1=1, N\)
NEWO22 10
```

$\mathrm{F}(\mathrm{I})=\mathrm{RT}(1)+\mathrm{C} 5(1)+\mathrm{C} 6(1)$
NEWO2220

DO $430 \quad 1=1, N$
NEWO2230

SUM $=0.0$
DO $425 \mathrm{~J}=1, \mathrm{~N}$
NEWO2240

425 SUM=SUM+C2 $(1, J) * F(J)$
NEWO2250
NEWO2260
430 UTP (1) =SUM
NEWO2270

I COUNT $=1$ COUNT+1
$T \mid M E=T I M E+T S$
IF (TIME.GT.1.00) GO TO 199
NEWO2280
NEWO2290
$R T(N / 2)=P O *(D C O S(O M E G A * T I M E))$
300

GO TO 200
NEWO2 310
NEWO2 320
NEWO2330
$199 \operatorname{RT}(N / 2)=0.0$
NEWO2 340
NEWO2 350
200 EXACT=0.0
JEST=1
NEWO2360

IF (ICOUNT.EQ. IO) GO TO 141
NEW02370

GO TO 143
NEWO2380
NEWO2390
141 WRITE $(2,175)$ TIME, UTP (N/2), JEST
NEW02400
I COUNT=0
NEW024 10
NEWO2420
143 DO $150 \quad 1=1, N$
NEWO2430
UDDTP (1) = (UTP (1) -UT (I) - (TS*UDT (1)) - ((TS**2) * (0.5-BETA) *UDDT (1))) *NEW02440
\& ($1 . /((T S * * 2) * B E T A))$ NEWO2450
CONTINUE NEWO2460
NEW02470
DO $161 \quad 1=1, N$
NEWO2480
$\operatorname{UDTP}(1)=\operatorname{UDT}(1)+T S *(((1.0-G A M A) * U D D T(1))+(G A M A * U D D T P(1)))$. NEWO2490
UT (I) =UTP (1)
NEWO2500
$\operatorname{UDT}(1)=\operatorname{UDTP}(1)$
NEWO2510
$\operatorname{UDDT}(1)=\operatorname{UDDTP}(1)$
NEWO2520
161 CONTINUE
IF (TIME.GT.TT) GO TO 500
NEWO2530
NEWO 2540
NEWO2550
GO TO 120
175 FORMAT (F $10.8,1 \mathrm{X}, \mathrm{F} 10.8,1 \mathrm{X}, \mathrm{II})$
NEWO2560

500 STOP

SUBROUTINE INVERT (AO, A, N)
DOUBLE PRECISION A $(70,70), A O(70,70)$
DO 1 I=1,N
DO $1 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
NEW02600
NEWO2610
NEWO2620
NEWO 2630
NEWO2640
NEWO2650
NEWO2660
NEW0 2670
NEWO2680
$1 \quad A(1, J)=A O(1, J)$
NEWO2690
NEWO2700
NEWO2710
$N P=N+1$
$A(1, N P)=1.0$
NEWO2720
DO $10 \quad 1=2, N$
NEWO2730
$10 \quad A(I, N P)=0.0$
NEWO2740
NEWO2750

FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2

		NEWO2760
	DO $40 \mathrm{~J}=1, \mathrm{~N}$	NEW02770
	DO $20 \mathrm{LX}=1, N$	NEWO2780
20	$A(N P, L X)=A(1, L X+1) / A(1,1)$	NEWO2790
	DO $30 \mathrm{KX}=2, \mathrm{~N}$	NEWO2800
	DO $30 \mathrm{LX}=1, \mathrm{~N}$	NEWO2810
30	$A(K X-1, L X)=A(K X, L X+1)-A(K X, 1) * A(N P, L X)$	NEWO2820
	$0040 \mathrm{LX}=1, \mathrm{~N}$	NEWO2830
40	$A(N, L X)=A(N P, L X)$	NEWO2840
		NEW02850
	RETURN	NEWO2860
	END	NEW02870
	SUBROUTINE JACOBI (K, M, N, IFPR,X,EIGV)	NEWO2880
C	SUBROUTINE JACOBI	NEWO2890
	IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)	NEWO2900
	DOUBLE PRECISION A 70,70$), \mathrm{B}(70,70), \mathrm{X}(70,70), \mathrm{EIGV}(70), \mathrm{D}(70)$,	NEWO2910
	EK $(70,70), M(70,70)$	NEW02920
	$1 F P R=0$	NEWO2930
C	COMMON/K,M/	NEW02940
C	WRITE (2, 1051)	NEWO2950
C1051	FORMAT (/1X,' INPUT DATA ')	NEW02960
C	READ (1,2) $\mathrm{N}, \mathrm{IFPR}$	NEW02970
C	WRITE (2, 1001) N, IFPR	NEW02980
C	DO $1010 \mathrm{l}=1, \mathrm{~N}$	NEWO2990
C	READ ($1, *$) ($A(1, J), J=1, N)$	NEWO3000
C	WRITE (2,1110) (A (1, J) , J=1,N)	NEWO3010
C1010	CONTINUE	NEWO3020
C	DO $1020 \mathrm{I}=1, \mathrm{~N}$	NEWO3030
C	READ ($1, *$) ($B(1, J), J=1, N)$	NEWO3040
C	WRITE (2, 1110) (B (1, J) , J=1,N)	NEW03050
C1020	CONTINUE	NEWO3060
C1001	FORMAT (2 1 10)	NEWO3070
C1110	FORMAT (8F10.4)	NEWO3080
	DO $21=1, N$	NEWO3090
	DO $1 \mathrm{~J}=1, \mathrm{~N}$	NEWO3100
	$A(1, J)=K(1, J)$	NEWO3110
	$B(1, J)=M(1, J)$	NEWO3120
1	CONTINUE	NEWO3130
2	CONTINUE	NEWO3140
	NSMAX $=15$	NEWO3150
C	WRITE $(2,1980)$	NEWO3160
1980	FORMAT (/XX,' EIGENVALUES ')	NEWO3170
	RTOL $=1 . D-12$	NEWO3180
	1 OUT=2	NEWO3190
	DO $10 \quad \mathrm{I}=1$, N	NEWO3200
	IF (A (1, I).GT.O.AND.B(1, I).GT.0.) GO TO 4	NEWO3210
	WRITE (I OUT, 2020)	NEWO3220
	STOP	NEWO3230
4	$D(1)=A(1,1) / B(1,1)$	NEWO3240
10	$E \operatorname{IGV}(1)=D(1)$	NEWO3250
	DO $30 \quad \mathrm{I}=1, \mathrm{~N}$	NEWO3260
	DO $20 \mathrm{~J}=1, \mathrm{~N}$	NEWO3270
20	$X(I, J)=0$.	NEWO3280
30	$X(1,1)=1.0$	NEWO 3290
	I F (N.EQ.I) RETURN	NEWO3300

FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2

C		NEWO3310
C IN	INITIALIZE SWEEP COUNTER AND EIGEN ITERATION	NEWO3320
C		NEWO3330
	NSWEEP=0	NEWO3340
	NR=N-1	NEWO3350
40	NSWEEP=NSWEEP+1	NEWO3360
	IF (IFPR.EQ. 1) WR ITE (IOUT, 2000) NSWEEP	NEWO3370
	PRINT*,' SWEEP NUMBER... ',NSWEEP	NEWO3380
C		NEWO3390
C	CHECK IF PRESENT OFF DIAGONAL ELEMENT is TOO LARGE	NEWO3400
C		NEWO3410
	$E P S=(0.01 * * N S W E E P) * * 2$	NEW03420
	DO $210 \mathrm{~J}=1, \mathrm{NR}$	NEWO3430
	$J J=J+1$	NEW03440
	DO $210 \mathrm{Kl}=\mathrm{JJ}, \mathrm{N}$	NEW03450
	$1 \mathrm{~F}(\mathrm{DABS}(\mathrm{A}(\mathrm{J}, \mathrm{K} 1))$. LT.1.D-20) GO TO 211	NEWO3460
	EPTOLA $=(A(J, K 1) * A(J, K 1)) /(A(J, J) * A(K 1, K 1))$	NEWO3470
	GO TO 212	NEWO3480
211	1 EPTOLA $=0.0$	NEW03490
212	$2 E P T O L B=(B(J, K 1) * B(J, K 1)) /(B(J, J) * B(K 1, K 1))$	NEWO3500
	IF ((EPTOLA.LT.EPS).AND. (EPTOLB.LT.EPS)) GO TO 210	NEWO3510
	$A K K=A(K 1, K 1) * B(J, K 1)-B(K 1, K 1) * A(J, K 1)$	NEWO3520
	$A J J=A(J, J) * B(J, K 1)-B(J, J) * A(J, K 1)$	NEWO3530
	$A B=A(J, J) * B(K 1, K 1)-A(K 1, K 1) * B(J, J)$	NEWO3540
	$C H E C K=(A B * A B+4 . * A K K * A J J) / 4$.	NEWO3550
	IF (CHECK) 50,60,60	NEWO3560
50	WRITE (IOUT, 2020)	NEW03570
	STOP	NEWO3580
60	SQCH=DSQRT (CHECK)	NEWO3590
	D $1=A B / 2 .+S Q C H$	NEWO3600
	$D 2=A B / 2 .-S Q C H$	NEWO3610
	DEN=D1	NEWO3620
	IF (DABS (D2) .GT. DABS (D1)) DEN=D2	NEWO 3630
	IF (DEN) $80,70,80$	NEWO3640
70	$C A=0$.	NEWO3650
	$C G=(-1) * A.(J, K 1) / A(K 1, K 1)$	NEW03660
	GO TO 90	NEWO3670
80	$C A=A K K / D E N$	NEWO3680
	CG= (-1.) *AJJ/DEN	NEWO3690
90	IF ($\mathrm{N}-2$) $100,190,100$	NEWO3700
100	$0 \quad J P 1=J+1$	NEWO3710
	$J M 1=J-1$	NEWO3720
	$K P 1=K 1+1$	NEWO3730
	$K M 1=K 1-1$	NEWO3740
	IF (JMI-1) 130,110,110	NEWO3750
110	0 DO $120 \quad 1=1, J M 1$	NEWO 3760
	$A J=A(1, J)$	NEW03770
	$B J=B(1, J)$	NEWO3780
	$A K=A(1, K 1)$	NEWO 3790
	$B K=B(1, K 1)$	NEWO3800
	$A(1, J)=A J+C G * A K$	NEWO3810
	$B(1, J)=8 J+C G * B K$	NEWO3820
	$A(1, K 1)=A K+C A * A J$	NEWO3830
120	$0 \mathrm{~B}(1, K 1)=B K+C A * B J$	NEWO3840
130	$0 \mathrm{IF}(\mathrm{KP} 1-\mathrm{N}) 140,140,160$	NEWO3850

```
    140 DO 150 I=KPI,N NEWO3860
    AJ=A (J,1)
    BJ=B (J,I)
    AK=A (K1,1)
    BK=B (Kl, 1)
    A(J,1)=AJ+CG*AK
    B(J,1)=BJ+CG*BK
    A(K1,1)=AK+CA*AJ
    150 B(K1,1)=BK+CA*BJ
    160 IF(JP1-KMI) 170,170,190
    170 DO 180 I=JP1,KM1
    AJ=A (J,1)
    BJ=B(J,1)
    AK=A (1,K1)
    BK=B (I,K1)
    A(J,1) =AJ+CG*AK
    B (J,1)=BJ+CG*BK
    A(I,Kl)=AK+CA*AJ
    180 B (I,KI)=BK+CA*BJ
    190 AK=A (KI,KI)
    BK=B (K1,K1)
    A (KI,KI) =AK+2.*CA*A (J,KI) +CA*CA*A (J,J)
    B(KI,KI) = BK+2.*CA*B (J,KI) +CA*CA*B (J,J)
    A(J,J)=A(J,J)+2.*CG*A(J,KI)+CG*CG*AK
    B(J,J)=B(J,J)+2.*CG*B(J,KI)+CG*CG*BK
    A (J,KI)=0.
    B(J,Kl)=0.
c
c UPDATE EIGENVECTOR MATRIX
C
    DO 200 1=1,N
    XJ=X (1,J)
    XK=X (I,KI)
    X(1,J)=XJ+CG*XK
    200 X (I,K1) = XK+CA*XJ
    210 CONTINUE
C
c uPDATE EIGENVALUES
C
    DO 220 1=1,N
    IF(A(I,I).GT.O.AND.B(I,I).GT.0)GO TO 220
    WRITE (IOUT, 2020)
    STOP
220 EIGV(I)=A(1,I)/B(I,I)
            IF (IFPR.EQ.O)GO TO 230
    WRITE (IOUT, 2030)
    WRITE (IOUT, 2010)(EIGV (I), I=I ,N)
C
C CHECK FOR CONVERGENCE
C
230 00 240 I=1,N
    TOL=RTOL*D (I)
    DIF=DABS (EIGV(I)-D(1))
    IF(DIF.GT.TOL)GO TO 280
240 CONTINUE
```

NEWO 3870
NEWO 8880
NEWO3890
NEW03900
NEWO3910
NEW03920
NEW03930
NEW03940
NEWO3950
NEW03960
NEW0 3970
NEW03980
NEWO 3990
NEW04000
NEWO4O 10
NEWO4020
NEWO4030
NEWO4040
NEWO4O50
NEW04060
NEW04070
NEW04080
NEW04090
NEWO4 100
NEWO4 110
NEWO4120
NEWO4 130
NEW04140
NEWO4150
NEWO4160
NEWO4 170
NEWO4180
NEWO4 190
NEWO4200
NEWO42 10
NEWO4220
NEWO4230
NEWO4240
NEWO4250
NEWO4260
NEWO4270
NEWO4280
NEWO4290
NEWO4300
NEWO4310
NEWO4320
NEWO4330
NEWO4340
NEWO4350
NEWO4360
NEWO4370
NEWO4380
NEWO4390
240 CONTINUE

```
FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2
```

```
C NEWO4410
C CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D NEWO4420
C
        EPS=RTOL**2
        DO 250 J=1,NR
        JJ=J+1
        DO 250 Kl=JJ,N
        IF (DABS (A (J,K1)).LT.I.D-30)GO TO 251
        EPSA= (A (J,Kl)*A (J,K1))/(A (J,J)*A (Kl,K1))
        GO TO 252
    251 EPSA=0.0
    252 EPSB=(B(J,Kl)*B(J,Kl))/(B(J,J)*B(KI,K1))
        IF((EPSA.LT.EPS).AND.(EPSB.LT.EPS))GO TO 250
        GO TO 280
    250 CONTINUE
C
C FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES & SCALE EIGENVECTORS
C
    255 DO 260 I=1,N
        DO 260 J=1,N
        A (J,l)=A (I,J)
    260 B (J,I) =B (I,J)
        DO 270 J=1,N
        BB=DSQRT (B (J,J))
        DO 270 Kl=1,N
    270 X (K1,J) =X (K 1, J)/BB
C WRITE (IOUT,310) NEWO4670
C DO 300 1=1,N
C300 WRITE (IOUT, 2010) (X (I,J) ,J=1,N)
    310 FORMAT (/IX,' THE EIGENVECTORS ARE ')
        RETURN
C
C UPDATE THE 'D' MATRIX AND START NEW SWEEP IF ALLOWED
C
    280 DO 290 I=1,N
    290 D (I)=EIGV(I)
        IF (NSWEEP.LT.NSMAX)GO TO 40
        GO TO 255
    2000 FORMAT (/1X,' SWEEP NUMBER IN JACOBI = ',14)
    2010 FORMAT (/IX,6E20.12)
    2020 FORMAT (/IX,' *%%%% ERROR SOLUTION STOP / MATRICES NOT POSITIVE
    EDEFINITE')
2030 FORMAT (/IX,' CURRENT EIGENVALUES IN JACOBI ARE ')
    END
    SUBROUTINE DAMP(N,EIGV,X,M,DAMRAT,C)
    IMPLICIT REAL*8 (A-H,O-Z) NEWO4910
    DOUBLE PRECISION X (70,70),T (70,70),M(70,70),C (70,70), EIGV (70), DAMRNEWO4920
    &AT (70)
    DO 10 I=1,N
930
NEWO4940
NEWO4950
```

FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2

```
    EIGV(I)=DSQRT (EIGV(I))
    DO 10 J=1,N
1 0
C (I,J) =0.0
    DO 2O | |=1,N
    DA=2.*DAMRAT (II) *EIGV(II)
    DO 20 l=I,N
    DO 20 J=1,N
20 C(1,J)=C(1,J)+x(1,11)*x(J,11)*DA
    DO 30 I=1,N
    DO 30 J=1,N
    T(I,J)=0.0
    DO 30 Kl=1,N
30 T(1,J)=T(1,J)+M(1,K1)*C(K1,J)
    DO 40 I=I,N
    DO 40 J=1,N
C (I,J) =0.0
    DO 40 Kl=1,N
C(I,J)=C(I,J)+T(I,KI)*M(K I,J)
C DO 50 1=1,N
C50 WRITE (2,120)(C (1,J),J=1,N)
    FORMAT (6D14.4)
    RETURN
    END
NEWO4960
NEWO4970
NEWO4980
NEWO4990
    NEW05000
NEW05010
NEW0502O
    NEW05030
NEW05040
NEW05050
NEW05060
NEW05070
NEW05080
NEW05090
NEWO5100
NEWO511O
NEWO5120
NEWO5130
NEWO5140
NEWO5150
4 0
NEWO5160
NEWO5170
NEWO5180
NEWO5190
120
NEW05200
NEW05210
NEW05220
NEW05230
```

FILE: DAVE OUT A OLD DOMINION UNIVERSITY -- CMSL 4.08706

THIS IS NEWMARKS SOLUTION

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

```
    IMPLICIT REAL*8(A-H,O-Z) CENOOO1O
    CENOOO2O
    CENOOO3O
C THIS PROGRAM SOLVES FOR THE DEFLECTIONS OF A BEAM
C SUBJECT TO A FORCING FUNCTION AT THE MIDPOINT
C USING CENTRAL DIFFERENCE METHOD
CENOOO4O
CENOOO5O
CENOOO6O
CENOOO70
CEN00080
CENOOO9O
CENOO100
CENOO110
    DOUBLE PRECISION L,K1,K2,K (70,70),M(70,70),C (70,70),U(70) ,UTN (70) ,CENOO120
    &RT (70) , Cl (70,70) , C2 (70,70), C3 (70,70),C4 (70), KEL (4,4), B (70),C5 (70) ,CENOO 130
        &DUM (70) ,UT (70) ,MINV (70,70),C6 (70,70),X (70,70) , EIGV (70) ,DAMRAT (70) ,CENOO 140
        EUDDT (70)
        | FPR=0
```



```
C**
C** L = LENGTH (IN) **
C%*
C%* NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER) **
C** L = LENGTH (IN) **
C
C%* NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER) **
C**
C%*
C*% TS = TIME STEP; DELTA 'T' (SEC) ** CENOO230
C%% **
C** ROW = MASS PER UNIT LENGTH (K|P*SEC**2/IN**2) **
C*% **
C** E = MODULUS OF ELASTICITY (KSI) **
C***
C*** XI = MOMENT OF INERTIA (IN**4) **
C%% % % %
C** AR = AREA. (IN**2) ***
C%%
C** Kl = ROTATIONAL STIFFNESS AT END 1 (K*|N/RAD)
C%*
C** K2 = ROTATIONAL STIFFNESS AT END 2 (K*|N/RAD)
C**
C** ZETA = DAMPING RATIO
C**
C** TT = TOTAL TIME FOR PROGRAM EXECUTION (SEC)
C%% **%
C%* PO = MAGNITUDE OF THE FORCING FUNCTION (KIPS)
C%%
    C** OMEGA = FREQUENCY OF THE FORCING FUNCTION (HZ)
C%%
C*%
```



```
    DATA L,NUMEL,TS,ROW/177.,12,0.00010,181.95270-09/
DATA E,XI,AR/10000.,.325,.7363/
DATA K1,K2,TT/00.000,00.000,4.00/
DATA PO,OMEGA,ZETA/0.00,0.000000000,0.0000/
I COUNT=0
    CENOO150
**
**
CENOO160
CENOO170
CENOO180
CENOO190
CENOO200
CENOO21O
CENOO220
CENOO230
CENOO240
CENOO250
CENOO260
CENOO270
C** XI = MOMENT OF INERTIA (IN**4)
CENOO280
CENOO290
CENOO3OO
CENOO310
CENOOO320
CENOO330
CENOO340
CENOO350
CENOO360
CEN00370
CENOO380
< *
CEN00390
CEN00400
CENOO410
CENOO420
CENOO430
CENOO440
CENOO450
CENOO460
CENOO470
CENOO480
CENOO49O
CENOO500
CENOO510
CENOO52O
CENOO53O
CENOO540
CENOO550
```

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

C DO $63 \mathrm{I}=1, \mathrm{~N}$ CENOII10
C SUM=0.0 CENOII20
C $\quad 0062 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
C62 SUM $=$ SUM $+C 6(1, J)$ *RT (J)
C63 $\mathrm{U}(1)=5 \mathrm{UM}$
C $\quad 0065 \quad 1=1, N$
C PRINT\%,'DEFLECTION AT NODE ',I,' IS ',U(I) CENOII7O
C65 WRITE $(2,64)$ I, U(1)
CENOII80
C64 FORMAT(/IX,'STATIC SOLUTION... U(',12,') = ',D23.16)
CENOII90
CENO 1200
CENO 1210
CENO 1220
CENO 1230
66 DO $75 \quad 1=1, N$
CENO 1240
DO $70 \mathrm{~J}=1, \mathrm{~N}$
CENOI250
$M(I, J)=0.0$
CENO 1260
$C(1, J)=0.0$
70 CONTINUE
CENO 1270
75 CONTINUE
CENO 1280
CENO 1290
CENOI 300
CENOI310
DO 80 1=1,N-1,2
$\mathrm{J}=1+1$
$M(1,1)=78$.
$M(J, J)=2 . *(H * * 2)$
80 CONTINUE
DO $90 \quad 1=1, \mathrm{~N}$
CENO 1320
CENO 1330
CENOI 340
CENO 1350
CENO 1360
CENOI 370
CENOI 380
$90 \quad M(1,1)=M(1,1) *(\mathrm{ROW} * \mathrm{H} / 78$.
C $\quad 00100 \quad 1=1, N$
1 FPR=0
CALL JACOBI (K,M,N,IFPR,X,EIGV)
DO $100 \quad 1=1, N$
DAMRAT (1) =ZETA
CALL DAMP (N,EIGV,X,M, DAMRAT,C)
$C 100 \quad C(1,1)=$ ZETA
C\%***** PRINT STIFFNESS, MASS, AND DAMPING MATRICES ************ C

C $\quad \operatorname{WRITE}(2,220) N / 2$
C \quad DO $210 \quad 1=1, \mathrm{~N}$
C210 WRITE $(2,215)(K(1, J), j=1, N / 2)$
CENOI 390
CENO1400
CENO 1410
CENO1420
CENO1430
CENO1440
CENO 1450
CENO1460
CENOI470
CENO1480
CENO 1490
CENO1500
CENO1510
CENO 1520
CENOI530
CENO 1540
CENOI550
CENO 1560

- CENO1580

C $\quad \operatorname{WRITE}(2,221) N / 2$
C DO 211 I $=1, N$
C211 WRITE $(2,215)(K(1, J), J=N / 2+1, N)$
C \quad WRITE $(2,222) N / 2$
C $\quad D 0212 \quad 1=1, N$
C212 WRITE $(2,215)(M(1, J), J=1, N / 2)$
C $\quad \operatorname{WRITE}(2,223) N / 2$

CENO1580
CENO 1590
CENO 1600
CENO 1610
CENO 1620
CENO 1630
CENO 1640
CENO 1650

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

C DO 213 I=1,N CENO1660
C213 WRITE $(2,215)(M(1, J), J=N / 2+1, N)$
C \quad WRITE $(2,224) N / 2$
C DO $214 \quad 1=1, N$
C214 WRITE $(2,215)(C(1, J), J=1, N / 2)$
C WRITE $(2,225) N / 2$
C $\quad D 0216 \quad 1=1, N$
C216 WRITE $(2,215)(C(1, J), J=N / 2+1, N)$
215 FORMAT (/1X,5014.7)
220 FORMAT (/IX,'THESE ARE THE FIRST ',13,' COLUMNS OF K ')
221 FORMAT (/IX,'THESE ARE THE LAST ', I3,' COLUMNS OF K ')
222 FORMAT (/IX,'THESE ARE THE FIRST ', 13,' COLUMNS OF M ')
223 FORMAT (/IX,'THESE ARE THE LAST ', 13,1 COLUMNS OF M ')
224 FORMAT (/IX,'THESE ARE THE FIRST ', I3,' COLUMNS OF C ')
225 FORMAT (/1X,'THESE ARE THE LAST ',I3,' COLUMNS OF C ')

PRINT*, 'IN START'
DO $300 \quad 1=1, N$
$300 \operatorname{RT}(1)=0.0$
C $\quad \operatorname{RT}(N / 2)=P O *(D S I N(O M E G A * T I M E))$
CALL INVERT (M,MINV,N)

PI $=\operatorname{ACOS}(-1.0)$
DO $3331=1$, NUMEL
Z=P|*H*|/L
$U T(2 * 1)=(.1563 /(1 .+D U M 1 * 2)) *((P \mid / L * D C O S(Z))+(D U M 1 * 2 * P I / L * D S I N(2 * Z)$ छ))
$U T(2 * 1-1)=(.1563 /(1 .+D U M 1 * 2)) *(D S I N(Z)+D U M 1 *(1 .-D C O S(2 * Z)))$
333 CONTINUE
C DO $334 \quad 1=1, N$
C334 PRINT*,'UT(', I,') = ',UT(I)

DO $302 \mathrm{I}=1, \mathrm{~N}$
SUM $=0.0$
DO $301 \mathrm{~J}=1, \mathrm{~N}$
$301 \operatorname{SUM}=\operatorname{SUM+K}(1, \mathrm{~J}) * U T(\mathrm{~J}) *(-1,0)$
302 DUM (1) =SUM
DO $306 \mathrm{I}=\mathrm{I}, \mathrm{N}$
SUM $=0.0$
DO $305 \mathrm{~J}=1, \mathrm{~N}$
$305 \operatorname{SUM}=S U M+M I N V(1, J)$ *DUM (J)
306 UDDT (1) =SUM
D0 $303 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{UTN}(1)=U T(1)+U D D T(1) *(T S * * 2) / 2$.

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

	- ,	CENO2210 CENO2220
c	DO $302 \mathrm{l}=1, \mathrm{~N}$	CENO2230
C	SUM $=0.0$	CENO2240
c	DO $301 \mathrm{~J}=1, \mathrm{~N}$	CENO2250
C301	SUM $=$ SUM $+M \operatorname{INV}(1, J) * R T(J)$	CENO2260
C302	UTN (1) = SUM	CENO2270
		CENO2280
C	D0 $3031=1, N$	CENO2290
C303	$\operatorname{UTN}(1)=\operatorname{UTN}(1) *(T S * * 2) /(2.0)$	CENO2300
		CENO2310
	DO $3101=1, N$	CENO2320
	$U(1)=0.0$	CENO2330
C	UT (1) $=0.0$	CENO2340
310	CONTINUE	CENO2350
		CENO2360
	PRINT*,'OUT START'	CENO2370
		CENO2380
	DO $3201=1, N$	CENO2390
	DO $315 \mathrm{~J}=1, \mathrm{~N}$	CENO2400
	$C 1(1, J)=M(1, J) /(T S * * 2)+C(1, J) /(2.0 * T S)$	CENO2410
	$C 2(1, J)=K(1, J)-(2 . * M(1, J) /(T S * * 2))$	CENO2420
	$C 3(1, J)=(M(1, J) /(T S * * 2))-(C(1, J) /(2 . * T S)$)	CENO2430
315	CONTINUE	CENO2440
320	CONTINUE	CENO2450
		CENO2460
	CALL INVERT ($\mathrm{Cl}, \mathrm{C6}, \mathrm{~N}$)	CENO2470
		CENO2480
c	DO $122 \mathrm{l}=1, \mathrm{~N}$	CENO2490
C122	WRITE $(2,123)$ I, C6 (1,1)	CENO2500
123	FORMAT (/1X,'THIS IS C6(',12,') ',023.16)	CENO2510
c	WRITE (2,176)	CENO2520
C	WRITE $(2,177)$	CENO2530
130	DO $440 \mathrm{I}=1, \mathrm{~N}$	CENO2540
	SUM $=0.0$	CENO2550
	DO $410 \mathrm{~J}=1, \mathrm{~N}$	CENO2560
C	WRITE (2,131)TIME, C2 (1, J) , UT (1)	CENO2570
410	SUM=SUM+C2 ($1, \mathrm{~J}$) *UT (J)	CENO2580
440	C4 (1) = SUM	CENO2590
131	FORMAT (/1X,'TIME ',F5.3,' C2 ',D18.10,' UT ', D18.10)	CENO2600
	DO $442 \mathrm{l}=1$, N	CENO2610
	SUM $=0.0$	CENO2620
	DO $411 \mathrm{~J}=1, \mathrm{~N}$	CENO2630
411	SUM $=$ SUM + C3 $(1, J)$ *UTN (J)	CENO2640
442	C5 (1) = SUM	CENO2650
		CENO2660
		CENO2670
		CENO2680
	DO $140 \quad 1=1, N$	CENO2690
140	$\mathrm{B}(1)=\mathrm{RT}$ (1)-C4 (1)-C5 (1)	CENO2700
		CENO2710
c	D0 $142 \mathrm{I}=1, \mathrm{~N}$	CENO2720
C142	WRITE (2,149) I, B (1)	CENO2730
149	FORMAT (/IX,'THIS IS B (',12,') = ',D23.16)	CENO2740
		CENO2750

```
C WRITE (2,176) CENO2760
C WRITE (2,177) CENO2770
        DO 542 I=1,N CENO2780
        SUM=0.0
        DO 511 J=1,N
    511 SUM=SUM+C6 (1,J)*B (J)
    542 U(1) =SUM
        I COUNT=I COUNT+1
        TIME=TIME+TS
C SUM=0.0
C DO 199 1=1,7,2
C }X=
C DI= ((E*XI/(ROW* (L***4)))**0.5)*(X**2)*(9.869604404)
C D2=((DSIN ((X)*3.14592654/2.0))**2)
C D3=1.0-(DCOS (D1*TIME))
C199 SUM=SUM+D2*D3/(D1**2)
C199 SUM=SUM+D3/(D1**2)
C EXACT=(2.*PO/(ROW*L))*SUM
C DT=2.*PO*(DSIN(OMEGA*TIME))*(L**3)/((3.14592654**4)*E*XI)
C SUM=0.0
C DO 199 I=1,NUMEL-1,2
C }X=
C199 SUM=SUM+(1./ ((X***4)-0.25))
C EXACT=SUM*D1
        LINE=3
        IF(ICOUNT.EQ.50)GO TO 141
        GO TO 143
    141.WRITE (2,175)TIME,U(N/2),LINE
C DIF=(U(N/2)-EXACT)/EXACT
C IF (DABS (DIF).LE.O.15)WRITE (2,177)
        I COUNT=0
    143 DO 150 I=1,N
        UTN (1)=UT (1)
    150UT (1)=U (1)
        IF (TIME.GT.TT)GO TO 500
        GO TO 130
        FORMAT (F 10.8, IX,F 10.8,1X,11)
    176 FORMAT (/IX,' TIME DEFLECTION AT L/2',15X,'EXACT') CENO3200
    500
        &-----------'1)
            STOP
            END
                    NO3230
                    CENO3250
                    CENO3260
    SUBROUTINE INVERT (AO,A,N)
    DOUBLE PRECISION A (70,70),AO (70,70)
    DO 1 I=1,N
*270
CENO3280
CENO3290
CENO3300
```

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

```
            DO 1 J=1,N CENO3310
1 A (I,J)=AO(I, J)
    NP=N+1
        A(1,NP)=1.0
        DO 10 I=2,N
        A (1,NP) =0.0
            DO 40 J=1,N
            DO 20 LX=1,N
        A(NP,LX)=A(1,LX+1)/A (1,1)
        DO 30 KX=2,N
        DO 30 LX=1,N
        A(KX-1,LX)=A(KX,LX+1)-A(KX,1)*A(NP,LX)
        DO 40 LX=1,N
        A(N,LX) =A (NP,LX)
            RETURN
        END
        SUBROUTINE JACOBI (K,M,N,IFPR,X,EIGV)
C SUBROUTINE JACOBI
        IMPLICIT REAL*8(A-H,O-Z)
        DOUBLE PRECISION A (70,70),B(70,70),X(70,70),EIGV(70),D(70),
        \varepsilonK (70,70),M (70,70)
        I FPR=0
C COMMON/K,M/
C WRITE (2,1051)
Cl051 FORMAT (/IX,' INPUT DATA '')
C READ (1,*)N,IFPR
C WRITE (2,1001)N,IFPR
C DO 1010 I=1,N
C READ (1,*)(A (1,J),J=1,N)
C WRITE (2,1110)(A (1,J),J=1,N)
ClO10 CONTINUE
C DO 102O I=I,N
C READ (1,*) (B (I,J),J=1,N)
C WRITE (2,1110)(B (1,J),J=1,N)
ClO2O CONTINUE
C1001 FORMAT (2110)
C1110 FORMAT (8F10.4)
    DO 2 i=1,N
    DO 1 J=1,N
    A (I,J) =K (I,J)
    B (I,J)=M (I,J)
    1 CONTINUE
2 CONTINUE
    NSMAX=15
C WRITE (2, 1980)
    1980 FORMAT (/IX,' EIGENVALUES ')
    RTOL=1.D-12
    1OUT=2
    DO 10 I=1,N
C PRINT*,'FLAG ',1,' A = ',A(1,1),' B = ',B(1, 1)
    IF(A(I,I).GT.O.AND.B(I,I).GT.O.)GO TO 4
CENO3320
CENO3330
CENO3340
CENO3350
CENO3360
CENO3370
CENO3380
CENO3390
CENO3400
CENO3410
CENO3420
CENO3430
CENO3440
CENO3450
CENO3460
CENO3470
CENO3480
CENO3490
CENO3500
CENO3510
CENO3520
CENO3530
CENO3540 .
CENO3550
CENO3560
CENO3570
CENO3580
CENO3590
CENO3600
CENO3610
CENO3620
CENO3630
CENO3640
CENO3650
CENO3660
CENO3670
CENO3680
CENO3690
CENO3700
CENO3710
CENO3720
CENO3730
CENO3740
CENO3750
CENO3760
CENO3770
CENO3780
CENO3790
CENO3800
CENO3810
CENO3820
CENO3830
CENO3840
CENO3850
```

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

```
        WRITE (IOUT,2020) CENO3860
        STOP
    4 D(1)=A(1,1)/B(1,1)
    10 EIGV(1)=D(1)
        DO 30 I=1,N
        DO 20 J=1,N
    20 X (1,J)=0.
    30 X (1, 1) =1.0
        IF (N.EQ.1)RETURN
C
C INITIALIZE SWEEP COUNTER AND EIGEN ITERATION
C
        NSWEEP=0
        NR=N-1
    40 NSWEEP=NSWEEP+1
        IF (IFPR.EQ. 1)WRITE (IOUT, 2000) NSWEEP
        PRINT*,' SWEEP NUMBER... ',NSWEEP
C
C CHECK IF PRESENT OFF DIAGONAL ELEMENT IS TOO LARGE
C
    EPS=(0.01**NSWEEP)**2
        DO 210 J=1,NR
        JJ=J+1
        DO 210 Kl=JJ,N
        IF(DABS (A (J,K1)).LT.1.D-20)GO TO 211
        EPTOLA= (A (J,Kl)*A (J,Kl))/(A (J,J)*A (Kl,Kl))
        GO TO 212
    211 EPTOLA=0.0
    212 EPTOLB=(B(J,K1)*B (J,Kl))/(B(J,J)*B (KI,K1))
        IF((EPTOLA.LT.EPS).AND.(EPTOLB.LT.EPS))GO TO 2.10
        AKK=A (K1, Kl) *B (J,KI) -B (KI,KI)*A (J,K1)
        AJJ=A (J,J)*B(J,K1)-B (J,J)*A (J,Kl)
        AB=A(J,J)*B(K1,K1)-A (K1,K1)*B(J,J)
        CHECK=(AB*AB+4.*AKK*AJJ)/4.
C PRINT*,'THIS IS CHECK... ',CHECK
            IF (CHECK) 50,60,60
50 WRITE (IOUT, 2020)
        STOP
    60 SQCH=DSQRT (CHECK)
        D 1=AB/2.+SQCH
    D2=AB/2.-SQCH
    DEN=DI
    IF (DABS (D2) .GT.DABS (D1)) DEN=D2
    I F (DEN) 80,70,80
70 CA=0.
        CG=(-1.)*A (J,K1)/A (KI,KI)
        GO TO 90
80 CA=AKK/DEN
    CG=(-1.)*AJJJ/DEN
90 IF(N-2) 100,190,100
100 JP l=J+1
    JM1=J-1
    KP 1=K 1+1
    KMI=K1-1
    IF(JMI-1) 130,110,110
        CENO3870
        CENO3880
        CENO3890
        CENO3900
        CENO3910
        CENO3920
        CENO3930
        CENO3940
        CENO3950
        CENO3960
        CENO3970
        CENO3980
        CENO3990
        CENO4OOO
        CENO4010
        CENO4020
        CENO4030
        CENO404O
        CENO4050
        CENO4060
        CENO4O7O
        CENO4080
        CENO4090
CENO4100
CENO4110
CENO4120
CENO4130
CENO4140
CENO4150
CENO4160
CENO4170
CENO4180
CENO4190
CENO4200
CENO4210
CENO4220
CENO4230
CENO4240
CENO4240
CENO4250
CENO4260
CENO4270
CENO4280
CENO4290
CENO4300
CENO4300
CENO4310
CENO4320
CENO4330
CENO4340
CENO4350
CENO4360
04360
CENO4370
CENO4380
04380
CENO4390
CENO4400
```

110	DO $120 \quad 1=1, J M 1$	CENO4410
	$A J=A(1, J)$	CENO4420
	$B J=B(1, J)$	CENO4430
	$A K=A(1, K 1)$	CENO4440
	$B K=B(1, K I)$	CENO4450
	$A(1, J)=A J+C G * A K$	CENO4460
	$B(1, J)=B J+C G * B K$	CENO4470
	$A(1, K 1)=A K+C A * A J$	CENO4480
120	$B(1, K 1)=B K+C A * B J$	CENO4490
130	IF (KP1-N) $140,140,160$	CENO4500.
140	DO 150 I=KPl, N	CENO4510
	$A J=A(J, 1)$	CENO4520
	$B J=B(J, 1)$	CENO4530
	$A K=A(K 1,1)$	CENO4540
	$B K=B(K 1,1)$	CENO4550
	$A(J, 1)=A J+C G * A K$	CENO4560
	$B(J, 1)=B J+C G * B K$	CENO4570
	$A(K 1,1)=A K+C A * A J$	CENO4580
150	$B(K 1,1)=B K+C A * B J$	CENO4590
160	IF (JP1-KMI) 170,170,190	CENO4600
170	DO $180 \cdot 1=J P 1, K M 1$	CEN04610
	$A J=A(J, 1)$	CENO4620
	$B J=B(J, 1)$	CENO4630
	$A K=A(1, K 1)$	CENO4640
	$B K=B(1, K 1)$	CEN04650
	$A(J, 1)=A J+C G * A K$	CENO4660
	$B(J, 1)=B J+C G * B K$	CEN04670
	$A(1, K I)=A K+C A * A J$	CEN04680
180	$B(1, K 1)=B K+C A * B J$	CEN04690
190	$A K=A(K 1, K 1)$	CEN04700
	$B K=B(K 1, K 1)$	CENO4710
	$A(K 1, K 1)=A K+2 . * C A * A(J, K 1)+C A * C A * A(J, J)$	CENO4720
	$B(K 1, K 1)=B K+2 . * C A * B(J, K 1)+C A * C A * B(J, J)$	CENO4730
	$A(J, J)=A(J, J)+2 . * C G * A(J, K I)+C G * C G * A K$	CENO4740
	$B(J, J)=B(J, J)+2 . * C G * B(J, K 1)+C G * C G * B K$	CEN04750
	$A(J, K 1)=0$.	CENO4760
	$B(J, K 1)=0$.	CEN04770
C		CEN04780
C UPD	ATE EIGENVECTOR MATRIX	CENO4790
C		CEN04800
	DO $2001=1, N$	CEN04810
	$x J=x(1, J)$	CENO4820
	$X K=X(1, K 1)$	CENO4830
	$X(1, J)=X J+C G * X K$	CENO4840
200	$x(1, K I)=X K+C A * X J$	CENO4850
210	CONTINUE	CEN04860
C		CENO4870
UPDATE EIGENVALUES		CEN04880
C		CENO4890
	DO $220 \quad 1=1, N$	CEN04900
	IF (A (1, 1) .GT.O.AND.B(1, 1).GT.0) GO TO 220	CENO4910
	WRITE (I OUT, 2020)	CENO4920
	STOP	CENO4930
220	$\operatorname{EIGV}(1)=A(1,1) / B(1,1)$	CENO4940
	IF (IFPR.EQ.O) GO TO 230	CENO4950

FILE: CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.08706

```
        WRITE (IOUT, 2030) CENO4960
        WRITE (IOUT,2010) (EIGV (I),I=1,N) CENO4970
C
C CHECK FOR CONVERGENCE
C
    230 DO 240 I=1,N
        TOL=RTOL*D(I)
        DIF=DABS(EIGV(I)-D(I))
        IF(DIF.GT.TOL)GO TO 280
    240 CONTINUE
C
C CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D CENO5070
C PRINT%,' RTOL ',RTOL
        EPS=RTOL**2 CENO5090
        DO 250 J=1,NR CENO5IOO
        JJ=J+1 CENO5110
        DO 250 kl=JJ,N
        IF(DABS (A (J,K1)).LT.1.D-30)GO TO 251 CENO5130
        EPSA=(A(J,K1)*A (J,K1))/(A (J,J)*A(K1,KI)) CEN05140
        GO TO 252
    251 EPSA=0.0
C PRINT*,' EPSA ',EPSA,' EPS ',EPS
    252 EPSB= (B (J,KI)*B (J,Kl))/(B(J,J)*B (KI,KI))
C PRINT*,' EPSB ',EPSB,' EPS '',EPS
        IF((EPSA.LT.EPS).AND.(EPSB.LT.EPS))GO TO 250
        GO TO 280
    250 CONTINUE
C
C FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES & SCALE EIGENVECTORS
C
255 DO 260 I=1,N
        DO 260 J=1,N
        A(J,l)=A(1,J)
    260. B(J,1)=B(1,J)
        DO 270 J=1,N
        BB=DSQRT (B (J,J)) CENO5310
        DO 270 Kl=1,N
    270 X (K1,J) =X (K 1,J)/BB
C WRITE (IOUT,310)
C DO 300 I=1,N
C300 WRITE (IOUT, 2010)(X (1,J), J=1,N)
310 FORMAT(/IX,' THE EIGENVECTORS ARE ')
        RETURN
C
C UPDATE THE 'D' MATRIX AND START NEW SWEEP IF ALLOWED
C
280 DO 290 I=1,N
290 D(1)=EIGV(1)
        IF (NSWEEP.LT.NSMAX)GO TO 40
    GO TO 255
2000 FORMAT(/IX,' SWEEP NUMBER IN JACOBI = ',14)
CENO4980
CENO4990
CENO5000
CENO5O1O
CENO5O2O
CENO5O3O
CENO5040
CEN05080
        CENO5120
CENO5140
CEN05150
CEN05160
CENO5170
CEN05180
CEN05190
CENO5200
CENO5210
CEN05220
CENO5230
CENO5240
CENO5250
CEN05260
CEN05270
CENO5280
CEN05290
CENO5310
CENO5320
CENO5330
CENO5340
CENO5350
CENO5360
CENO5370
CENO5380
CENO5390
CENO5400
CENO5410
CENO5420
CNO5420
CENO5430
CENO5440
CENO5450
CENO5460
CENO5470
CENO5480
CENO5490
CENO5500
```

```
    2010 FORMAT (/IX,6E20.12) CENO5510
2020 FORMAT //1X,' %%** ERROR SOLUTION STOP / MATRICES NOT POSITIVE CENO5520
    EDEFINITE')
2030 FORMAT (/1X, CURRENT EIGENVALUES IN JACOBI ARE 1)
CENO5540
    END
    SUBROUTINE DAMP (N,EIGV,X,M,DAMRAT,C) CENO5570
    IMPLICIT REAL*8 (A-H,O-Z) CENO5580
    DOUBLE PRECISION X (70,70),T (70,70),M(70,70),C (70,70),EIGV (70),DAMRCENO5590
    &AT (70) CEN05600
    CENO5610
    DO 10 1=1,N
    EIGV(I)=DSQRT(EIGV(I)) CENO5630
    DO 10 J=1,N CENO5640
    C(I,J)=0.0 CENO5650
    DO 20 ||=1,N CENO5670
    DA=2.*DAMRAT (II)*EIGV(II) CENO5680
    DO 20 I=1,N CENO5690
    00 20 J=1,N
    DO 20 I=1,N CENO5690
    C(I,J)=C (I,J)+X(I,II)*x (J,II)*DA
    DO 30 1=1,N
    DO 30 J=1,N
    T(I,J)=0.0
    DO 30 Kl=1,N
30 T(I,J)=T(I,J)+M(1,KI)*C (KI,J)
    DO 40 1=1,N
    DO. 40 J=1,N
    C (1,J) =0.0
    DO 40 Kl=1,N
40 C (I,J) =C (I,J) +T (I,KI)*M(KI,J)
C DO 50 1=1,N
C50 WRITE (2,120)(C (1,J),J=1,N)
120 FORMAT (6014.4)
    RETURN
    END
CENO5620
    CENO5660
    CENO5730
    CENO5740
    CENO5750
    B0 30 Kl=1,N CENO5760
    CENO5770
    CENO5780
    CENO5790
    CENO5800
    CEN05810
    CENO5820
    CEN05830
    CENO5840
    CENO5850
    CENO5860
    CEN05870
    CENO5880
    CENO5890
CENO5900
```

FILE: DAVE OUT A OLD DOMINION UNIVERSITY -- CMSL 4.08706

THIS IS CENTRAL DIFFERENCE SOLUTION

[^0]: ${ }^{l}$ Professor, Department of Civil Engineering, Old Dominion University, Norfolk, Virginia 23529.
 ${ }^{2}$ Graduate Research Assistant, De partment of Civil Engineering, Old Dominion University, Norfolk, Virginia 23529.

