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EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PASSIVE
DAMPING CONCEPTS FOR MEMBER FORCED AND FREE VIBRATIONS
By

Zia Razzaql and David W. Mykins?

ABSTRACT

The results presented in this research reportjare the outcome of an
ongoing study directed toward the identification of potential passive damp-
ing concepté for use in space structures. The effectiveness of copper
brush, wool swab, and "silly putty" in chamber dampers is inyestigated
through natural vibration tests on a tubular aluminum member. The member
ends have zero translation and posééss partial rotational restraints. The
8illy putty in chamber dampers provide the maximum passive damping efficien-
cy. Forced vibration tests are then conducted with one, two,'and three
silly putty in chamber dampers. Owing to the limitation of the vibrator
used, the performance of these dampers could not be evalua;ed experimentally
unﬁil the forcing function was disengaged. Nevertheless, their performance
is evaluated thfough a forced dynamic finite element analysis conducted as a
part of this investigation. The theoretical results are based on experi-
mentally obtained damping'ratios indicate that the passive dampers are
considerably more effective under member natural vibration than during
forced vibration. Also, tge maximum damping under forced vibration occurs

at or near resonance.

l professor, Department of Civil Engineering, Old Dominion University,
Norfolk, Virginia 23529. .

2Graduate Research Assistant, Department of Civil Engineering, Old Dominion
University, Norfolk, Virginia 23529. .
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NOMENCLATURE
[C] = damping matrix for member
[D] = displacement vector

velocity vector

'©
b

[D] = acceleration vector

[DJ] = displacement vectbr at node j

E = Young's Modulus

I = moment of inertia

[K] = global stiffness matrix for member

[(R] = forging function vector

YB = arbitrary constants for Newmark's method
A'd = dynamic deflection amplitude

Ap = static midspan deflection

Ay = static midspan deflection

At = time increment

$ = modal vector

n = damping efficiency index

{2 = frequency of applied forcing function

w = natural frequency

Wee = natural frequency from finite element analysis
o = mass density

g = damping ratio
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1. INTRODUCTION
1.1 Background and Previous Work

The space station designs currently'under consideration by NASA are
three-dimensional space structures composed of long tubular members.
Modules providing the required living and working space for astronauts will
bg attached to this framework. Such a structure, suspended in a weightless
environment, would be subjected to many types of dynamic loading. These
include differential heating or cooling of the structure, variations in
acceleration or gravitational pull, and impact with a solid object. The
ability to expeditiously damp these vibrations before they cause permanent
damage is a practical problem worth studying.

The necessarily large slenderness ratio of the avefage space truss
member, combined with the flexible, semi-rigid end restraints cause the
dynamic reSPOnse.ofvthese members to be characterized by low frequency,
small amplitude vibrations. Active damping techniques utilize electronic
sensors ;nd movable masses to reduce vibration of structures. This system,
although effective, requires regular maintenance and an external power
source. An alternative for mechanically damping a system is the concept of
"passive" damping. This method uses a de?ice or material permanently
attached to the structure or its components and designed to absorb the
energy of vibration thereby providing some damping of the system. Unlike
"active" damping, this would require minimal maintenance and no external
power.

The challenge to developing a passive d;mping concept, particularly for

a space structure is two-fold. First is the necessity to minimize the mass,

for without this constraint one obvious solution would be to provide large



ﬁass concentrations at the critical nodal points for the vibration modes.
Such an approach would be expensive since the cost of transporting the
system into space is directly related to the mass. The second challenge is
to identify a concept which will provide passive damping without altering
the strength or stiffness of the structure. For example, mild compression
of the members provides some damping, however, the safe service loads for
the structure are altered. |

Recently, investigations into passive damping concepts for slender
tubulgr members have been conducted with various end conditions (References
1-5). The most effective concepts found were the méss-string-whiskers
assembly, and brushes for electrostatic and frictional damping. In these
experiments, only natufal flexural vibration was examined.

The previous work was conducted on hollow tubular steelvmemﬁers with an
outer di;meCer of 0.5 inches. The passive damping concepts whiéh were found
to be effective for these members may not be as effective if the dimensions
are changed. Factors altered by dimensions#l changes may include the damper
mass required, the extent of the frictional interaction, and the member
dynamic characteristics. Clearly research is needed to identify a viable
passive damping concepts for members of different sizes and dymanic
properties. In the present study, hollow tubular aluminum members with an
outside diameter of 2.0 inches are used. These members more closely
resemble the actual size and material which may be used in the future space
stations.

1.2 Problem Definition
Figure 1 shows schematically a slender beam of length L with a hollow

circular cross section. The outer diameter is D, the inner diameter is D,



and the material is aluminum with a Young's modulus of 10,000 ksi. An
aluminum member is used because the graphite composite tubes which may
#ossibly be used in space structures are not yet available. The member ends
are provided with a prototype connection developed by NASA fér the space
frames. These connections possess partial rotational restraint
characteristics in the plane of motion and a more rigid end condition in the
orthoganal plane. No axial or lateral movement of the member ends is
permitted.

The problem is to identify potential passive damping concepts to absorb
the energy of both naturai flexural vibration, and harmonic forced flexural
vibration, and to study the effectiveness of each concept. The natural
vibration is caused by the sudden release of a constant static load. The
harmonic forcing function is applied through a mechanical connection to a
harmonic vibrator.

1.3 Objective and Scope

The following are the main objectives of this study:

1. ‘VIdentification of potential passive damping concepts for slender
tubular structural members. Specifically, the following damping
concepts are iﬁﬁestigated:

a. wool swabs,
b. cépper brushes,

c. silly putty in chambers.

2. Evaluation of the damping efficiencies of the various damping
concepts.
3. Evaluation of the suitability of a theoretical finite element

analysis by comparison to experimental results for natural and

-3 -



forced vibration, and a previous finite-difference solution for

natural vibration.

Only flexural member vibration is considered. The natural vibration

study is conducted on each of the three passive damping concepts and for one

specific initial deflection. Only the most efficient damping concept is

considered for further study under forced vibration. Also, the vibration is

induced by load application at the member midspan.

1.4 Assumptions and Conditions

The following assumptions and conditions have been adopted in this

study:

1.

2.

The deflections are small.

The material of the member is linearly elastic.

Only planar vibration is considered.

Damping force is opposite but proportional to the velocity at any
location along the member.

The damping force is uniform along the length of the member.

The member is tested at 1l-g and room‘temperature.

The effect of secondary induced forces such as varying axial
tension and compression developed in the member during vibration

is considered to be negligiblé.



2. THEORETICAL FORMULATION
2.1 Finite Element Formulation
The beam shown in Figure 1 may be divided into N finite elements along
the length. For the discretizéd system, the governing equation of motion

can be expressed in the following matrix form (Reference 6):

[K](D} + [M](D) + [C](D) = (R) (1)
where:
{D) = displacement vector,

velocity vector,

(D)

)

acceleration vector,

[K] = global stiffness matrix for the "structure",
[M] = global modified lumped mass matrix,
(C]

{R)

damping matrix,

forcing function vector.

The boundary and initial conditions for the problem shown in Figure 1

are given in Reference 2 and are summarized here:

D(0,t) = 0 : (2)
D(L,t) = O ' : (3)
EI D"(0,t) =k, D'(0,t) ' (4)
EI D"(L,t) = -k, D'(L,t) ' ' (5)
b(x,0) = 0 | G

D(x,0) = O(x; K, EI, L) (7)



where primes represent differentiation relative to x, and dots represent

time differentiation. The displacement vector at any node j along the

member can be written as:

(D,) = (8)

whgre dj and d‘J represent, respectively, the deflection and slope of j.

Equations 2 to 5 represent the boundary conditions whefeas Equations 6
and 7 are the initial conditions. Equation 7 simply states that at time
zero, the member deflected shape is dependent on x, K, EI and L.

The first task toward the solutién of the matrix equétion is the
assembly of the three coefficient matrices. The [K] matrix is assembled
from the individual element matrices combined in such a way so as to enfo}ce
the given boundary and inter-element compatability conditions. To
illustrate the procedure, an example of a beam with four elements as shown
in Figure 2 is given in Appendix A.

The global mass matrix is a diagonal form of a lumped mass matrix which
was developed (Reference 6) for use with elements where translational

degrees of freedom are mutually parallel, such as beam or plate elements.



This matrix may be written as:

NIBI

mL?
78

39

(M) - | o 9

[N1] =}

78

where:

m = mass at each degree of freedom = pL(A)
0 = mass density (mass/in3)

L= lenéth of element (in)

A = cross sectional area of element (in?)

In order to calcuiate the damping matrix [C], it is hecessary to first
determine the modal shape and natural frequencies of the system. Tbis is
accomplished numerically by solving the following eigen value problem using
the Jacobi method (Reference 7):

(K] -2 [M][(®)] = (0) B (10)

where:

w = natural frequency,

{p} = modal vector.

Once w and {¢) are known, determination of the damping matrix proceeds as

/
described in Reference 7.



Once all three coefficient matrices have been assembled, the solution
of Equation 1 may proceed using any one of several solution algorithms
available. .

2.2 Newmark's Method

Newmark's method for solving the dynamic equilibrium equation is

sometimes called thg trapezoidal method because it is based on a linear

interpolation to find succeeding points. This is done by assuming:

(D), A, = (D), +AE(D), +At3| (—-B] (D}, + B(D} A, (11)
2

and

(D),.A, = (D), +At ((1 YD), + ¥(D),,A t) (12)

where At is a time increment, and B and Y are arbitrary constants. By
substituting Equations 11 and 12 into Equation 1 written at time t = t + At,

one gets (Reference 6):

/. _
(K] + é{— (€1 + 55 7[M1) (D)e,pe = (Rhype +

(c] { X-(o3, -g- 1 (D), + @t)

-1 (D), ) + (13)
BAt

X
3

(M] / (D), + ——l-{f)}t oL 1:>{D}t

BAt? At
For a known loading function we may solve Equation 13 for the deflection at

time t = t + At using the deflection, velocity and acceleration at time t.



The algorithm for Newmark's solution is as follows:

1. Compute the coefficient matrices from geometric and material
properties.

2. At t = 0, set initial conditions by prescribing (D}, , and

(D)o
3. Use Equation 1 to solve for {B}tdr
4. Solve Equation 13 for (D},,,,-
5. Solve Equation 11 fof (ﬁ}toAt'

6. Solve Equation 12 for {b}toAt'

7. Set (D}, = (D) (D), = Blypes (D), = (D) yup,-
8. If t < total time desired, go to Stepva.

9. Stoﬁ.

This method of solution is unconditionally stable if Y>0.5 and
B> (2Y + 1)2/16. With'f— 0.5 and B = 0.25, there are ho amplitude errors
in any sine wave motion regardless of its frequency, although the pefiods
are overestimated. The mode shapes of the member in this study, however,
are not known exactly. Nevertheless, Y andB values of 0.5 and 0.25

-respectivelyf‘were tentatively chosen. The suitability of these valueévis
evaluated later in Section 4.

The initial static deflection vector required in Stép 2 of the
algorithm may be determined using any one of the several classical
structural analysis techniques. An approximate shape function for the
member due to a specified mihpoint displacement Apat time t = 0 is taken in

the following form (Reference 2):

ﬁxj kL . ZHXJ
dy = A sin — + — 1 - cos — _ (14)
L 4mEI L



where:

A, = — ' (15)

1+
2TEI

The initial slope of the member at any point is found by differentiating

Equation 14 resulting in:

T TX, k 2Trxj
d'J==A1 — COS === 4 —=m= Sin —— (16)
L L 2E1 L

where x, is the position of node j along the member length.
2.3 Central Difference Formulation |

The governing equations and formulation of the coefficienf matrices to
be used in the central difference method of solution are precisely the samé
as those previously given for Newmark's method. Once these geometric and
physical proﬁerties are determined, one proceeds by writing the central

difference expressions for both velocity and acceleration at an arbitrary

time t:
. 1 [ '
(D}, = 200 h(D}t,At - {D}t_At:' (1“7)
.o 1 [ '
{D}, = Be)? fD}t*At - 2(D}, + {D}t_NJ (18)

Equations 17 and 18 may then be substituted into Equation 1 to yield, after

some rearrangement:

M (c) o 2(M]
+ D)y = ®), - ([K] -
(At)2  2(At) (At?)

(D},

(19)
[M] (C]

(At)? - 2(At)

(D)

- 10 -



The initial conditions (D}, and [f)}o are prescribed and (ﬁ)o is found by
solving Equation 1. Once these are known Equations 17 and 18 may be solved

simultaneously to yield the displacements {D}_,, required to start the computations.

. we)y? |,
{(D})_,e = (D) - At{D}y, + — (D}, (20)
2

The solution algorithm for central difference is as follows:

1. Compute the coefficient matrices from geometric and material
propertieé.

2. Set At = time step increment.

3. Set initial conditions by prescribing (D}, and (b)c=0'

4, Solve Equation 1 for (ﬁ)t=0‘

5.v Solve Equation 20 for (D)-At'

6. Solve Equation 19 for (D), p,.

7. Set (D}, 5, = (D), and (D}, = (D} p-
8. If t < total time desired, go to 6.
9. Stop.

The central difference method is a conditionally stable, explicit
method of solution. Conditionally stable implies that if At is not chosen
small enough, the predicted response of the system will grow unmbounded. A
"~ preliminary numerical study showed that At must be in the range from 0.001

to 0.005, therefore, a At = 0.001 sec. is used in this study.

- 11 -



3. EXPERIMENTAL STUDY
3.1 Specimen and Conneqtion Details
3.1.1 Specimen

The exferimental study consisted of conducting natural and forced
vibration tests on a tubulaf aluminum member. The tests were performed both
with and without passive damping devices present inside the member. The
tubular member used was 14'-9" long with an outside diameter of 2" and a
wall thickness of 0.125", yielding an inside diameter of 1.75". A schematic
of the member tested is shown in Figure 1. Note that the member was
horizontal for all testing, with gravitational forces acting in the plane of
motion.

3.1.2 Connection Details

The pr&totype end connection used in this study is shown in Figure 3.
It is c;nstructed of an aluminum alloy, weights 0.595 lbé. excluding
f#stener bolts, and has a volume of 3.988 in3. The connection has a total
of nine clevis blades, six of which are in the horizontal plane. One of the
blades is in the Qertical plane (at C) and two are at 45 degrees t6 the
horizontal plane. These two are located at 45 degrees relative to the
vertical clevis and in the planes containing the two lower clevis blades
shown in Figure 3(a).

The fastner loéations for the clevis bladés in the horizontal plane are
numbered 1 through 12. The member was fastened at locations 3 and 4 shown
in Figure 3(a). Fasteners at locations 5 through 11 are used to mount the
connéction to a fixed base plate. No fastener was installed at location 12
due to an interference problem with the support'underneath the base plate.

This did not make any difference since the other fasteners provided

- 12 -



sufficient fixity. Each fastener has a diameter of 0.25 in. and a length of
0.94 iﬁ.4 Washers were used at locations 1 and 2 only.

The ends of the tubular member were threaded to allow one-£a1f of the
"snap-lock" connection to be screwed onto it. Small holes were drilled
through this threaded connection and pins inserted to prevent rotation and
loosening of the connection during testing. The other end of the snap-lock
connection had its blade end fit sﬁugly into one of the clevis blades of the
prototype end connection and fastened by two bolts. The spring stiffness,
k, shown in Figure 1 was determined by a statical analysis using an
experimentally determined midspan deflection for a known concentrated load.
This value was 53.1 k-in/rad. .The assembled connection is shown in Figure
4,

3.2 Passive Damping Concepts

Three different types of passive dampers referred to in Section 1.4 are
described in this ;ection.
3.2.1 Copper Brush Dampers

Figure 5 shows a copper brush damper 0.8125 inches in diameter, of
total length 3.125 inches and a weight of 13.0 grams. The brush is
manufactured by Omack Industries, Onalaska, Wisconsin 54650 with a US
Patent 41986 and an inventory control number 07668341989. It has a threaded
aluminum piece 1.0 inch long at one end with a twisted wire 2.125 inches in
length attached to it. The copper bristles are attached to the entire
length of the twisted wire. This type of brush is commonly used in cleaning
the bore of a 12.gauge shotgun.

Figures 6 and 7 show schematically the attachments for the passive

_dampers and their spacing inside the tubular member. As shown in Figure 6,

- 13 -



the assembly consists of several parts. First, a helical spring with a .
stiffness of 0.44 1b/in. is attached to the inside of the connection through
a hook on the snap-lock connector as shown in Fighre 8. A nylon line is
tied to the other end of the spring and aléo connected to the first copper
brush damper. The nylon line (sportfisher monofilament line manufactured by
K-Mart Corporation, Troy, Michigan 48084, 8013.9,vNo. EPM-40, inventory
control number 04528201391) used in this investigation has a 40 1b.
capacity. A series of nylon line and dampers are attached along the member
length until the other end of the tubular member is reached. The end of the
nylon line is passed through a hole in the snap-lock connector and stretched
by an #mount of 2.0 inches in the longitudinal direction to induce nominal
tension in helical spring. It is then secured to the vertical clevis at the
support. The stretched helical spring is shown in Figure 9. The resulting
passive dampiﬁg assembly is aligned with the longitudinal axis of the |
tubular member due to the small amount of axial tension. No axial
compreésion of the member is induced by the passive damping assembly on the
tubular member since both ends of the nylon line are connected to the rigid
supports. Since the nylon line is flexible, a significant portion of the
stretching is due to elongation of the line itself with the remainder of the
stretching taking place in the épring. The dampers are installed
equidistantly between the ends of the member.

As a part of the present study, the effect of both number of brushes
and presence or absence of tension on the nylon line, on member damping was
examined.

In addition to baseline experiments on ﬁhe specimen with no damping

devices, a total of ten different conditions were examined. Tests with 1,
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2, 3, 5, and 7 brushes were conducted both with and without tension in the
line.
3.2.2 Wool Swab Dampers

‘ Figure 10 shows a wool swab damper with a 1.0 inch diameter, a total
length of 3 inches and a weight of 7.1 grams. The wool swab ié manufactured
by Omark Industries, dnalaska, Wisconsin 54650 with a US patent 415838 and
an inventory controi number 076683422187. It has a threaded piece at one
end with a twisted wire attached to it to which the wool swab is attached.
The aluminum piece is 0.75 inches long while the wool swab has a length of
2.125 inches. This type of brush is commonly used for cleaning 12 gauge
shotguns. The dampers are mounted inside the tubular member as shown in
Figures 6 and 7. Testé wére carried out using 1, 2, 3, 5, and 7
equidistantly spaced wool swab dampers.

3.2.3 Silly Putty in Chamber Dampers

The final device examined was the "silly putty" in chamber damper shown

in Figure 11. It consists of a sphere approximately 0.?5 inches in diameter
made from silly putty placed‘inside a hollow cylindrical chamber . Silly
putty is a trade name for an elasto-plastic material commonly used as a
children's toy. It is manufactured by Binney and Smith, Inc., Easton, PA
18042, with an inventory control number of 07166208006. The chamber is made
from a 1.0 in. long pieée'of a "Bristole Pipe"™ (PVC-1120, Schedule 40, ASTM-
D-1785, nominal 1 inch pipé) having an original outer diameter of 1.058 in.
and a wall thickness of 0.15 in. Since the damping effect was assumed to be
provided by the silly putty, two stéps were taken to reduce the mass of the
damper thereby improving its efficiency. First, the inside diameter is

increased by machining it to 0.914 in. resulting in a wall thickness of 0.07
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in. Its weight is further reduced by drilling a total of seven 0.25 in.
diameter holes around its periphery half-way from its ends. The silly putty
is held inside the chamber by means of a plastic wrap ("Saran Wrap")
stretched over the ends of the chamber and held in place with tape.- The
silly putty is then free to bounce around inside the chamber. Thé total
weight of the damper includiﬁg the silly putty, PCV chamber, and plastic
wrap is 7.4 gms. The dampérs are mounted inside tﬁe tubular member as shown
in Figures 6 and 7. Tests were conducted with a nominal tension in the
spring and with no tension in the springvusing 1, 2, 3, 5 and 7 equidistant
silly putty in chamber dampers. An additional test was performed with 11
equidistant dampers and a nominal tension in the spring.
3.3 Test Setup and Procedures

The instrumentation used in the tests consisted of a proximity probe,
harmonic vibration devices and a deflection-time plotter. This section
summarizes the test setup and procedures followed for all the experiments
included in this report.

Figufe 12 shows a s;hematic of the member natural vibration test setup.
A weight, W = 7.9 1b. was suspended at the member midspan‘by means of a
coxd, causing a total midspaﬁ deflection of 5/32 in. To induce natural
vibration, the cord was cut with a pair of scissors, thereby releasing the
member. The time dependent deflection at member midspan is recorded by
means of a proximity probe shown in Figure 13, and connected to a
deflectionftime plotter.

Figure 14 shows the member forced vibration setup, a schematic of which
is shown in Figure 15. Forced vibration of the specimen was obtained using

a vibrator (Model 203-25-DC) with an oscillator (Model TPO-25). The
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vibrator applies a forcing function of the type:

F(t) = F, cos (Qt) ' (21).

in which Fy = 4 1b., t = time, and ( = frequency of the forcing function.
The applied frequency may be controlled using the oscillator.

The forcing function F(t) is transmitted from the vibrator to the
tubular member through a fabricated vibrator connector as indicated in
Figure 14. The details of this mechanical connector afe shown in Figure 16.
It consists of three main segments PQ, QR and RU interconnected at Q and R
by means of pins. End P is connected to the vibrator. The end U is
connected to the lower part of a metal hose clamp provided around the
tubular member at midspan as indicated in Figure 14. The parfs QR and RU
can be disengaged at R by pulling out the pin RS instantaneously in the RS
direction as indicated by the arrow at S. A string attached at S is used to
pull oué the pin. Once the pin is pulled, the arm QR drops freely and the
beam is free to vibrate without constraints. Both joints Q and R are well
lubricated to reduce friction. The vibrator connector in the engaged and
the disengaged positions is shown in Figures 17(a) and 17(b), fespectively.
~ A record is made of the deflection-time response of the member once the
forcing function, F(t), is removed.

3.4 Test Results and Discussion

In this section, the results from the member natural and forced
vibration tests are presented ang discussed.
3.4.1 Natural Vibration

All passive damping concepts were tested with natural flexural member
vibration~caused by releasing a weight at midspan as explaihedlin Section

3.3. The initial midspan deflection, A,, due to the suspended weight is
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0.1563 in. A summary of the test results for the tubular member with no
dampers as well as with wool swab, copper brush, and silly putty in chamber
dampers is given in Table 1. The number of dampers, the total weight of the
damping assembly, the damping ratio and the damping efficiency index are
listed for each passive damping assembly. The logarithmic decrement method,
as described in Reference 8, was used with the experimentally obtained
deflection versus time plots to obtain the damping ratio.

The calculation of the damping ratio for the natural vibration tests
was obtained using the first sixteen cycles and reading the amplitudes
directly from the experimental deflection versus time plots. Each g value in
Table 1 was then obtained by taking the average results of three tests for
each combination offdamping devices; |

The efficiency index is defined (Reference 1 and 2):

- Cqg

n- (22)

Md
in which g is the damﬁing ratio with the damping devices, f, is the damping
ratio in the absence of any passive damping device, and M; is the total mass
of the damping assembly.

The natural fréquency from all of fhe experiments was found to be 8.4
Hz. The deflection versus time plots referenced in this section are
obtained using the average 7 value and natural frequency from the

experiments, and the following A -t relationship (Reference 1).

A ,Aoe-th _w_C sin w4t + cos w,t (23)
Wyq

The damped circular frequency,w,, is given by:
W, = wl - g2 , (24)
The details including the listing of a computer program utilizing Equation
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23 to produce a deflection versus time plot are given in Reference 1. A
baseline plot of deflection versus time for the member with no dampers 1is
shown in Figure 18.
3.4.1.1 Copper Brush Dampers

For the copper brush dampers the maximum'ﬁx— 0.0131 is obtained with an
assembly of three damping devices. This assembly produces the maximum n =
16.72 in/lb-seéz. Figure 19 shows the corresponding average A-t plot for a
10 second duration. Figure 20 shows the effect of the three copper brushes
on the deflection time envelopes. The vertical ordinate in this figure is
designated by A, to indicate that the figure represents the envelopes rather
than the complete A-t relationship. The damping ratios from the experiments
are given in Table 2(a). In addition to the test conducted as described in
Section 3.3, a series of tests were made with no tension in the damping
assembly. These tests, conducted with 1, 2, 3, 5 and 7 devices in the
specimen showed no significant increase in member damping regardless of the
number of devices used. The results are éummarized in Table 2(b). One
élausible explanation for this is as follows. The outer diamefer of the
copper brush is less than the inside diameter of the member. When there is
no tensiQn in the damping assembly, the devices are free to bounce inside
the specimen. Because the v;brations are relatively small and the natural
frequency low, the assembly with no tension has a tendency to move with the
specimen, bouncing slightly inside the member. Due to the relatively
negligible mass of the damper as compared to the member this nearly
-coincident movement produces minimal damping of the vibration. With a
slight tension in the assembly, it can have its own natural frequency,

different from the specimen. As a result, when vibration of the specimen is
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induced, the impact of the damping assembly with the side of the tube sets
the assembly in motion. Two types of motion then contribute to the damping.
First, because of the difference in nafural frequency of vibration impact of
the dampers against the inside of the tubular member acts to damp the
vibration. Secondly, the frictional interaction between the dampers and the
member inside surface takes place while the dampers vibrate both in plane
but out of phase, and axially. When the number of dampers is increased
beyond three with nominal tension, the damping ratio decreases.
3.4.1.2 Wool Swab Dampers

For the wool swab dampers the maximum 7 = 0.0105 was obtained with an
assembly of three dampers resulting in an efficiency of 9.05 in/ib-secz.
The maximum n = 12.34 was obtained with ; single damper assembly yielding a
damping ratio of 0.0099. Figures 21 and 22 represent the A-t plots for the
member with three, and one wool swab damper assemblies, respectively for a
10 second duration. Figures 23 and 24 show the effects of these damping
assemblies on the deflection-time envelopes. fhe damping ratio increased as
the number of damﬁers was increased from one to three. Increasing the
number of devices beyond three resulted in a decrease in both damping ratio
and efficiency. The small negative efficiency noted for seven devices can
be taken as practically zero. It was found that a variation in the method
of attachment of the assemblyAto test specimen from concentric to an
eccentric connection had no significant effect on the resulting damping
ratio. The results are given in Tables 3(a) and 3(b).
3.4.1.3 sSilly Putty in Chambers Dampers

For silly putty in chambers dampers, the maximum § = 0.0115 was

obtained with an assembly of three dampers resulting in a n = 15.73 in/1b-
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sec?, whereas the maximum 1 = 21.35 in/lb-sec’? was obtained with an assembly
of two dampers corresponding to g = 0.0113. Figures 25 and 26 represent the
A-t plots for the member with three and two silly putty in chamber damper
assemblies, respectively, for 10 second duration. Figures 27 and 28 show
the effects of these damping assemblies on the deflection-time envelopes.
The damping ratio was found to increase aslthe number of dampers was
increased from one to three. Increasing the number of dampers beyond three
resulted in é decrease of both damping ratio and efficiency. The tests
conducted with no tension in the assembly showed a slight increase in
damping ratio up to the three damper assembly. An increase in the number of
dampers beyond three with no tension on the assembly showed no increase in
damping ratio above the baseline damping ratio for the empty member. The
results are given in Tables 4(a) and 4(b). Of all the passive damping
devices tested in this study, the assembly of three silly putty in chamber
dampers was found to be the most efficient. Therefore, these dampers were
chosen fér further study under forced harmonic vibra;ion.
3.5 Forced Then free Vibration
It was discovered during testing that the vibration employed for the
forced vibration tests allowed only a limited amount of travel. This meant
that ﬁhe deflection of the member at the location where the vibrator was
attached was limited to what the vibrator would allow. Nevertheless, forced
vibration tests were conducted on the individual member since it was not
known initially whether or not the dynamic deflection would exceed the
vibrator capacity. The results presented later in this section indicated
- that the vibrator constrained the member deflection for a certain range of

forcing function frequencies including that which would otherwise have
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constituted a resonance condition. This limitation must be taken into
Qccount when evaluating the performance of the dampers on an iéaividual
‘member. | |
3.5.1.1 silly Pu;ty in Chamber Dampers

The‘results of the experimental study of the member under forced then
free vibfation are summarized in Table 5. Tests were conducted with no
dampers, and 1, 2, énd 3 dampers inside the member. Each of these
assemblies was subjected to a force of 4 1lb. at the member midspan, at
» frequencies of 2, 5, 7, and 9 Hz, corresponding to Q/uh ratios of 0.238,
0.596, 0.834, and 1.073, respectively. An additional test was conducted on
the empty member and the 3 damper assembly using a frequency of 12 Hz (Q/w,
= 1.430). The experimental results are shown in Figures 29 through 32. The
f;ée vibration part of therdeflection-time graph is obtained by di;engaging
the forcinglfunction from the member midspan as described in Section 3.3.
The constrained dynamic deflection amplitude, A'D , and its dimensioqless
value, A'D/As,_where Ag 1s the calculated static midspan deflection due to a
4 1b, load,.are listed in Table S. The constraiped dynamic deflection
amplitude is the measured amplitude of the initial constrainedlforce part of
the deflection-time piots. Also listed in Table 5 are the maximum initial
free vibration amplitudes,vAF, for each assembly and frequency considered.
Two dimensionless quantities are derived from this value asA.}_./As and AF/A'D,
The data in Table 5 shows that the A.b/As values range from 0.59 to
0.95. . For all the cases, the maximum value was observed for an applied
force frequency of 5 Hz. It was also found tha§ the Ap/Ag and
Ag/A’p ratios were gradually increasing for increasing forcing function

frequencies. One important consequence of the deflection constraint imposed
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by the vibrator is that no resonance phenomenon could be produced in the
vicinity of 8.4 Hz. The average damping ratios were obtained from the free
vibration part of the deflection-time curves and are listed in Table 5. As
seen from this data, the single silly putty in chamber damper configuration
provides the maximum decrgase in free vibration amplitude. Another
important observation to be made is that the g wvalues in Table 5 are
significantly less than the corresponding values for the same damping
assemblies given in Table 1. This is attributable to the dependence of the
damping ratio on the initial velocity which is considerably greater fo;‘the
results reported in Table 5 than for those in Table 1.

3.5 Comparison of Damping Efficiencies

In Section 3.4, the efficiency'index baséd on Equation 22 was cbmputed
for each damping device. The average values ofn and the associaﬁed damping
assemﬁly‘weight for natural vibration were presented in Table 1. Figure 33
shows the curveé between N and>the weight of dampers used in the natural
vibration tests for various damping concepts. The silly putty in chamber
dampers provided ﬁhe most efficienct damping of the member. It is worth
noting that all. of the curves have ascending and descending portioﬁs which
define the maximum attainable damping efficiency. In general, an increase
in damping assembly weight beyond 50 grams results in a decline in
efficiéncy.

Figure 34 shows the relationships between the damping efficiency and
the number of damping devices for natural vibration using all three
concepts. These curves also show that, in general, an assembly of more than
three damping devices results in a decline in efficiency. This may indicate

that the first and second mode shapes are.dominating the dynamic response.
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By applying the dampers to locations in the vicinity of maximum deflection
for these mode shapes, the maximum efficiency was realized. Any increase in
the number of dampers beyond three adds mass to the system, and is
associated with a decrease in damping.

The average damping efficiency indices for the forced then free
vibration tests for 1, 2, and 3 silly putty in chamber dampers are given in
Table 5. The maximum efficiency was obtained using one silly putty in
chamber damper and a forcing function frequency of 5 Hz. ' No correlation
between the maximum efficiency and the initial vibration amplitude was
observed. However, the maximum average damping ratio for each device was
found to occur near the theoretical resonance of ﬁhe member (between 7 and 9
Hz) in spite of the inability of the apparatus to allow the resonance to

occur.
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4., NUMERICAL STUDY
4.1 Natural Vibration
4.1.1 Finite Element versus Experiment
" The formulation and solution algorithmn using Newmark's method for
computing the dynamic response of a beam was given in Section 2. 1In this
section, a comparison is made of the deflection versus time relations from
this finite element analysis to those obtained experimentally.

A preliminary study showed that for At = 0.0001 sec., the central
difference formulation described in Section 2.3 gave precisely the same
results as Newmark's method. Since Newmark's method provides accurate
results even with larger time steps, it was used to produce Figure 35
through 43. Figure 35 shows a comparison of the finite element and
experimental A-t plots for the member with no dampers. The solid line is
the finite element solution and the dashed line is the experimental curve
using a frequency of 8.4 Hz and the average damping ratios from Table 1.
Figure 36 shows a comparison of the finite element and experimental A -t
plots for the member with 3 copper brush dampers. In both of these curves,
it can be seen that the period of the vibration obtained using finite
elements is exagerated by approximately.32%. However, the amplitudes of the
vibration are accurate to within 5%.

4.1.2 Finite Element versus finite-Diffetence

The A-t curves representing the finite-difference solution are obtained
using the computer program developed in Reference 2. Figures 37 and 38 show
the comparison of the finite element and the finite-difference solutions for
the member with no dampers and three copper brush dampers, reépectively.

The data for these plots is obtained from Table 1. As indicated in these
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figures, the difference in the period calculated by these two methods is
approximately 26%. However, the amplitudes of the vibration from the two
analyses are within 3% of each other. Figure 39 is a comparison of the
finite-element and finite difference solutions for a simply supported beam
(k, = k, = 0). Similar correlation is also observed for a fixed end beam
(k;, =k, =o). 1In the presence of end connections of intermediate fixity,
the two analyses provide somewhat differing results.

4.2 Forced then Free Vibration

In this section, curves obtained from the finite element solution for
various forcing function frequencies are given. Also, a comparison of the
theoretical solution to experimental results is made for both the member
with no dampers and the member with one silly putty in chamber damper at a
forcing function frequency of 2 Hz.

Figure 40 shows the response using Newmark's method for a beam with no
dampers and subjected to a 4 1lb. force at a frequency of 2 Hz. After 1
second, fhe forcing fﬁnction is removgd and the beam is allowed to vibrate
freely. Figure 41 shows the response of the same system with a forcing
functidn frequency of 6 Hz. This frequency corresponds to a frequency ratio
Q/wge ©f 0.95, where w;, = 6.3 Hz is the natural frequency of the beam f;om
the finite element solution. Clearly, this represents a nearly resonant
condition as expected. After 1 second, the forcing function is removed and
the member is allowed to vibrate freely.

Figures 42 shows the finite element and experimental curves for the
member with no dampers and subjected to a 4.0 1b. force at a frequency of 2

Hz. Although the forced vibration portions of the two curves at Q = 2 Hz

are quite similar, the free vibration amplitudes differ significantly. The
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reasons for this difference may be as follows. In the experiment, the
forecing function was terminated by pulling the pin RS from the Yibrator '
connector shown in Figure 16. During the tiny time interval in which the
pin was being pulled out, the contact and frictional forces involved in
disengaging the segment QR from RU were unintentiénally transferred to the
members thereby retarding its initial amplitude in the free vibration range.
Consequently, the ensuing envelope of the experimen;al free vibration A-t
curve is considerably narrower than the theoretical one. Similar effects
are observed in Figure 43 which shows the finite element and experimental
results when one silly putty in chamber damper is used.

At larger { values such as those of the order of 6 Hz, the -t
relations from the finite element analysis do not match the experimental
ones even in the forced vibration range. This is primarily due to the
constraints imposed by the vibrator on the maximum member deflecting as
explained earlier in Section 3.5.

4.3 Finite Eiement Analysis for Forced Vib;ation

As mentioned earlier, the vibrator used in the experimental study.
constrained the motion of the member in the presence of a forcing function.
As a result, the actual effect of passing damping could not be observed for
this condition. Thereforé, a numerical study was conducted to examine the
effect of passive damping in the presence of the forcing function. 1In this
section, the theoretical results showing both the extent of damping which
would occur during the forced vibration and the effect of the dampers on the
defiection-time envelopes are presented and discussed. Figure 44 shéws the
theoretical dynamic magnification factor (DMF),'AD/AS, versus the frequency

ratio v, for daﬁping ratios of 0.0094, 0.0131 and 0.50. The first two
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values of the damping ratios were obtained from the member tests with no
dampers, and 3 copper brush dampers, respectively. As can be seen in this
figure, the copper brush dampers do not change the DMF appreciably for non-
resonance frequency ratios. However, the dampers reduce the DMF by
approximately 7% at resonance.

Figufé 45 shows the deflection versus time relationship for the member
with no dampers and with three copper brush dampers, with a forcing function
frequency of 6.35 Hz (Q/w, = 1.0) for one segond, and allowed to vibrate
freely thereafter. These curves show that the passive damping results in a
member amplitude reduction in the forced vibration rangé, however, its most
beneficial effect occurs during the free vibration. After 3 seconds of free
vibration, the amplitudes of the member with démpers are approximately 40%

less than those corresponding to the empty member.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The following conclusions are drawn from the research conducted herein:

1.

The silly putty in chamber concept provides the maximum passive
damping effigiency under member natural vibration, as compared to
the copper brush or the wool swab concepts.

Ihe copper brush concept provides the largegt damping ratio of the

system under natural vibration.

Due to the limitation of the vibrator used, the effectiveness of

the passive damping concepts could not be evaluated until the

forcing function was disengaged.

Frictional and contact forces acting on the member during
disengageﬁent from the vibration apparatus caused a reduction of
the ensuing free vibration member amplitude.

The theoretical results indicate that in the presence of a forcing
function, the passivé damping devices provide the most effective
damping.in the vicinity of the resonant frequency.

The theoretical results show that passive dampers are

" considerably more effective under member natural vibration than

during forced vibration.

Under natural vibration, the finite element solution results in
periods which are nearly 30 percent greater than the experimental
ones. However, amplitudes are reasonably accurate. The accuracy
of the results is improved when the member ends are pinned or

fixed.
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5.2 Future Research

The most successful passive damping concepts identified herein should
be examined using forced vibration equipment which would allow investigation
of their effectiveness at or near resonance. Attempts should be made to
identify a means of disengaging an applied force without adversely affecting

the dynamic response of the member. These tests should be conducted on both

individual members and structure sub-assemblies.
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Table 1.

Member natural vibration test results for copper

brush, wood swab, and silly putty in chamber dampers.

PASSIVE NUMBER OF WEIGHT OF AVERAGE DAMPING
DAMPING DAMPERS DAMPING DAMPING EFFICIENCY
CONCEPT ASSEMBLY RATIO INDEX
(GM) r (IN/LB.-SEC?)
No Dampers 0.00 0.0094 0.00
Copper 1 13.0 0.0098 h 5.39
Brush 2 26.0 0.0107 8.76
Dampers 3 39.0 0.0131 16.72
5 65.0 0.0129 9.44
7 91.0 0.0097 0.48
Wool 1 ~7.10 0.0099 12.34
Swab 2 14.20 0.0102 9.87
Dampers 3 21.30 0.0105 9.05
5 35.50 0.0101 3.46
7 49 .70 0.0091 -0.99
Silly 1 7.8. 0.0100 13.48
Putty 2 15.6 0.0113 21.35
in 3 23.4 0.0115 15.73
Chamber 5 39.0 0.0109 6.74
Dampers 7 54.6 0.0097 0.96
11 85.8 0.00

0.0094
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Table 2(a).

brushes and no cord tension.

Damping ratios from natural vibration tests with copper

Number of Devices ., ¢, g L AvG
1 0.0097 0.0095 0.0095 | 0.0096
2 0.0097 0.0097 0.0097 | 0.0097
3 0.0098 0.0096 © 0.0096 | 0.0097
5 0.0094 0.0096 0.0094} 0.0095
7 0.0095 0.0095 0.0096 | 0.0095
Table 2(b). Damping ratios from natural vibration tests with copper

brushes and nominal cord tension.

Number of Devices

[}

C AVG

1 2 ‘ 3
1 0.0097 | 0.0102 0.0096 | 0.0098
2 0.0105 | 0.0109 0.0108 | 0.0107
3 0.0133 | 0.0128 0.0131 | 0.0131
5 0.0129 | 0.0131 0.0128 | 0.0129
7 0.0096 | 0.0098 0.0095 | 0.0096
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Table 3(a): Damping ratios for natural vibration tests
brushes and concentric cord support.

with wool

Number of Devices & G s AVG
1 0.0098 0.0097 0.0098 | 0.0098
2 0.0100 0.0058 0.0101 | 0.0100
3 0.0107 0.0108 0.0101 | 0.0105
5 0.0096 0.0100 0.0097 | 0.0098
7 .0.0094 ! 0.0094 ‘ 0.0094 ] 0.0094

Table 3(b5. Damping ratios for natural vibration tests with wool

brushes and eccentric cord support.

Number of Devices Ci ' Cz C3 CAVG
1 0.0099 0.0099 0.0098 | 0.0099
2 0.0103 0.0101 0.010i 0.0102
3 0.0105 0.0105 0.0105 } 0.0105
5 0.0099 0.0102 0.0102 | 0.0101
7 0.0093 | 0.0090 0.0090 | 0.0091
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Table 4(a). Damping ratios for natural vibration tests with silly
putty and no cord tension.

Number of Devices 4 g, T, C ave

1 0.0096 0.0097 0.0096 {0.0096

2 0.0099 0.0099 0.0102 {0.0100

3 0.0101 0.0101 0.0101 {0.0101

5 0.0095 0.0095 0.0093 |0.0094

7 0.0094 0.0092 0.0096 10.0094
Table 4(b). Damping ratios for natural vibration tests with silly

putty and nominal cord tension.

Number of Devices C 4 C, C, G ave w
1 0.0104 0.0096 0.0100 {0.0100
2 0.0112 0.0115 0.0113 §0.0113
3 0.0112 0.0115 0.0117 ]0.0115
5 0.0109 0.0109 0.0109 j0.0109
7 0.0096 0.0099 0.0096 {0.0097
11 0.0094 0.0094 “0.0094 0.0094
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Table 5. Member forced then free vibration test results for silly putty
in chamber dampers.
Passive|Forcing | Constrained Initial : - Average n
Damping|Function | Dynamic AD'A§S Free Ap/ DGO /N ¥y Damping
Concept|Frequency| Amplitudes Vibration Ratio
(Hz) AD' in. Amplitude g Avg.
Ap max in
2 0.067 0.84 ! 0.030 .38 0.45 1 0.0043 :
No ;
Dampers |5 0.073 0.92 |0.067 .84 | 0.91l0.0072 :
7 0.070 0.88 | 0.077 .97 1.10 | 0.0073 ; '
I
9 0.067 0.84 1 0.082 .03 1.23 : 0.0069 ]
i |
12 0.047 0.59 :0.082 .03 1.75: 0.0025 i ]
' !
2 0.062 0.78 | 0.030 .38 0.48 1 0.0058 5 33.7
' !
1 silly |5 0.073 0.92 | 0.063 .80 0.86 | 0.0089 - 38.2
Putty ' ' ,
in 7 0.067 0.84 :0.070 .88 1.05 0.0089 i 36.0
Chamber] )
Damper | 9 0.067 0.8 | 0.073 .92 1.10{ 0.0080 bo24.17
2 0.065 0.82 ! 0.030 .39 0.48 { 0.0049 6.7
2 Silly |5 0.075 0.95 | 0.060 .76 0.80: 0.0069 i(-3.4)
Putty : f
in 7 0.067 0.84 | 0.053 .67 0.80 ; 0.0076 3.4
Chamben i
Damper | 9 0.065 0.82 | 0.083 .05 1.28 { 0.0080 i 12.4
2 0.063 0.80 | 0.030 .38 0.47 | 0.0057 ? 10.5
i
3 Silly |5 0.075 0.95 § 0.057 71 0.76 | 0.0055 (-12.7)
Putty !
in 7 0.068 0.86 | 0.077 .97 1.12 ; 0.0064 f(-6.7)
Chamben , f
Damper | 9 0.068 0.86 | 0.090 .14 1.32] 0.0082 : 9.7
}.
12 0.047 0.59 | 0.082 .03 1.75} 0.0036 8.2
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Figure 1. Schematic of tubular member
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Figure 2. Example of finite element model for the beam.
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Figure 4. Member end connection
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Figure 8. Helical spring attachment at end e
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Figure 9. Stretched helical spring at end e
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Figure 10. Wool swab damper
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Figure 11. Silly putty in chamber damper
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Figure 12. Schematic of member natural vibration setup

50



ORIGINAL PAGE IS
OF POOR QUALITY

bt

Figure 13. Proximity probe
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Figure 14. Member forced vibration setup
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Figure 15, Schematic of member forced vibration setup
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Figure 42. Theoretical and experimental forced then free A-t pléts for a 4.0 1b.
force at 2 Hz for 1 second on member with one silly putty in chamber damper.
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DMF

Figure 44. Theoretical dynamic magnification factor versus frequency
ratio for damping ratios of 0.0094, 0.0131, and 0.50.
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APPENDIX A
EXAMPLE OF FOUR ELEMENT BEAM STIFFNESS MATRIX
In this appendix the procedure used to assemble the beam stiffness
matrix using a beam composed of four elements is presented.
The typical element stiffness matrices for Elements b and ¢ as shown in

Figure 2 are given as (Reference 6):

12EI 6E1 -12EI 6EL
L3 L2 L3 L2
4EI -6EI 2E1
L L2 L2
(Kly o = » (A.1)
; 12EI -6EI
Symmetric L3 L?
4EI
L

Since only planar motion is considered, axial effects are negligible and,
therefore, not included in the element stiffness matrix.

Derivation of thé stiffness matrix for Element a as shown in Figure 2
is as foliows. The flexibility matrix for the element is given by:
[F] = [H]®[F][H] + [F], + [F],, « (A.2)

in which [H] is the equilibrium matrix given byf

1 0 0
[H] = 0 1 L (A.3)
0 0 1

and [F]_, represents the flexibility of the connection at end one, [F], is

the flexibility of the element itself and [F]_, is the flexibility of the

connection at end two. These are defined as follows:



[F], =

[F]c2 =

therefore the flexibility matrix in full can be written as

1 1
L.
2 4k

[F) =

F—L3

EI

L2

E

L .
4ET |

The inverse of [F] is given by:

(Ky,l, = [F]7! =

1 1 L2
3 4k EI
1 1 L
-+ —_
2 4k _EI
3EI (4k + 1)
L° (k+ 1)
-3EI (2k + 1)
LZ (k + 1)
[

1 .
1+ —

4k

-
-3EI (2k + 1)

LZ

EI
L

(k + 1)

(4k + 3)
(k + 1)

The other stiffness matrices now follow from:

[KII]a =

[H] [K,,] [H]® =

R

3EI (4k + 1)
3 (k+ 1)

3EI
L2

EI

L

86 _

(21<)__-1

(k + 1)

(4k)

(k + 1)

(A.4)

(A.5)

(A.6)

(A.7)

tA.B)

(A.9)



[_3E1 (4k + 1) 3EI (2k + 1)
(K51, = L3 (k + 1) L¢ (k + 1)
Ky 1% = -[H] [K,,] = (A.10)
-3EI  (2k) EI (2k)
L (k + 1) L (k + 1)
Therefore, the total stiffness matrix for Element a is:
[ 3EI (4k + 1) 3EI  (2k) -3EI (4k + 1) 3EI (2k + 1)
L3 k+1) L7 (k+1) L3 (k+1) L7 (k+1)
EI (4k) -3EI (2k) EI (2k)
L (k+1) L (k + 1) L (k + 1)
K], =
3EI (4k + 1) -3EI (2k + 1)
Symmetric L (k+1) L7 (k+1)
EI  (4k + 3)
L (k + 1)
Similarly, Element d shown in Figure 2:
3EI (4k + 1) -6EI (k)
, L3 (1 + k) L (1 + k)
[Kyplgq = (A.12)
-6EI (k) 4EI (k)
L (1 + k) L (1 +Kk)
— —
3ET (4k + 1) 3E1 (2k + 1)
L3 (1 + k) L¢ (1 + k)
[KII]d =
[H] [K,,]4 [HY] = (A.13)
3EI (2k + 1) EI (4k + 3)
L (1 + k) L (1 + k)
—— PR |

- 87
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3EI (4k + 1) 6EI k
L3 (1 + k) L2 (1 + k)
[Kiolg = [Kyl% = - _
-[H] [K] (A.14)
-3EI (2k + 1) 2EI (k)
LZ (1 + k) L (k+ 1)

y— B e

3BT (4k + 1) 3EI _(2k +1) -3EI (4k + 1) 6EI _ (k)
L3 (1 + k) I? 1+k)y L3 (k+1) 17 (k+1)

EI  (4k +3) -3EI (2k +1) 2EI _ (k)
L (1+k) L° (1+k) L (1+Kk)

K], = . (A.15)
3EI (4 + 1) -6EI (k)
Symmetric L? (1 + k) L (1 + k)
| LEI (k)
L (1 +k)

Using the above element matrices, the following global matrix is assembled:

(Kypla [Kypl,o - (0] (01 . (0]
Ky 1a [K22]a+[K11ib (Kio 1y (0] (0]
(K] ={[0] [(Ka1ly [Kolp+(Kyple (Kol (0] (A.16)
(0] (0] (K1 (Kool +(Kyplg  [Kiolg
(0] (0] (0] - [Kylg [(Kyol4

— —_—
This is an n X n matrix where ﬁ = 2N + 2, and N = the number of elements. ~
The first two boundary conditions are enforced by putting 1.0 in the
diagonal corresponding to the translational degrees of freedom at the
supports and setting all other entries in that row and column equal to zero.

. The last two boundary conditions are accounted for in the derivation of the
individual stiffness matrices.

Note that an adjustment to the stiffness matrix must be made when the

i
A
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APPENDIX B

COMPUTER PROGRAMS

" As a part of this study, two computer programs were developed to solve
the dynamic equilibrium matrix equation given in Chapter 2. A brief
description of these programs along with their listings and sample outputs
are given in this appendix.

B.1 NEWMARK ’

This program is based on the analysis described in Section 2.2. A
description of the required input data is given at the beginning of the
program listing. Data is input by means of the data statements in lines 48
to 53 of the program listing. The output consists of the time in seconds
and co;responding midspan deflection in inches.

B.2 CENDIF
Program CENDIF is based on the analysis described in Section 2.3. Data

input and output are the same on NEWMARK.



FILE:

Coedededededededededadededdele etk .INPUT DATA

Ce
Ckx*
(083 3
Crk
s
Ci*
CH%
Ck
Ck*
Ch*
C*%
Ck*
C*%
CH*x
C*x%
(0813
C¥%
Che
Cx*
C¥*
Ck%
Cx
Chex
CHkx
Chx
CH*
CH%
Ck*
Cx%
Cx
C&%
Chx
Chexe
Chk

NEWMARK FORTRAN A OLD DOMINION UNIVERSITY -- CMS -- 4.2

IMPLICIT REAL*8 (A-H,0-2)

NEWO0O010
NEW00020
NEWO0030

DOUBLE PRECISION L,K1,K2,K(70,70),M(70,70),C(70,70),U(70),UDT (70) ,NEWOOOLO
&RT (70) ,C1(70,70) ,€2(70,70) ,€9(70,70) ,Ch (70) ,KEL (L4, 4) ,F (70) ,C5(70) ,NEWOOO50
&DUM (70) ,UT (70) ,MINV (70,70) ,C8(70,70) ,UDTP (70) ,UDDT (70) , UDDTP (70) , UNEWOOO60
&TP (70) ,UTN(70),€3(70) ,C6 (70) ,FREQ (5) ,KINV(70,70),X(70,70) ,A(70,70) NEWOOO70
&,B(70,70),D(70) ,EI1GV (70) ,DAMRAT (70) , ANS (70, 70) ,RES (70,70) ,XT (70, 7ONEWO0O80

&) :
| FPR=0

IFPR = PRINT REQUEST VARIABLE FOR JACOBI
0 = DO NOT PRINT INTERMEDIATE VALUES
1 PRINT INTERMEDIATE VALUES

L = LENGTH (IN)

NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER)
TS = TIME STEP; DELTA 'T' (SEC)

ROW = MASS PER UNIT LENGTH (KIP*SEC%%2/[N##*2)

E = MODULUS OF ELASTICITY (KSI)

X| = MOMENT OF INERTIA  (IN#%L)

AR

AREA  (IN¥**2)

K1 = ROTATIONAL STIFFNESS AT END 1 (K*IN/RAD)

K2 ROTATIONAL STIFFNESS AT END 2 (K*IN/RAD)

ZETA = DAMPING RATIO

TT = TOTAL TIME FOR PROGRAM EXECUTION (SEC)
PO = MAGNITUDE OF THE FORCING FUNCTION (KIPS)

OMEGA = FREQUENCY OF THE FORCING FUNCTION (RAD)

DELO = PRESCRIBED INITIAL DEFLECTION AT MEMBER MIDSPAN

RhFekdkkdededefededefdedefdede ek Ndehfdfdk

%k
£33
*%
fek

ek

ek
ek
13
**
k%
k%
k%
%%
Kk
k%
%%
dede
%%k
k¥
Kk
k%
fede
Nk
%k
ek
£ 3
F3
k%
E3
k%
et

%%k

fok
E3

C*****ﬁ**********************************************************

DATA L,NUMEL,TS,ROW/ 177,10,0.000500,202.145L4E-09/

DATA E,XI,AR/10000.,0.32500000,0.7363/
DATA K1,K2,TT/53.1100,53.1100,6.00/

DATA PO,OMEGA,ZETA/0.002226367,12.56637062,0.007200/

DATA GAMA,BETA,DELO/0.50,0.25,0.007914/

ICOUNT=0

NEW00090
NEWOO100
NEW00110
NEWOO 120
NEWOO130
NEWOO 140
NEWOO 150
NEW0O 160
NEWOO0170
NEW00180
NEW0O0190
NEW00200
NEW00210
NEW00220
NEW00230
NEW002L40
NEW00250
NEW00260
NEW00270
NEW00280
NEW00290
NEW00300
NEWO0310
NEW00320
NEW00330
NEWOO340
NEW00350
NEW0O0360
NEW00370
NEW00380
NEW00330
NEWOOLOO
NEWOO410
NEWOOL20
NEWOOL 30
NEWOOLLO
NEWOOL50
NEWOOL60
NEWOOL70
NEW00L 80
NEWOO0L90
NEW00500
NEWO0510

-NEWO0520

NEWO00530
NEWOO540
NEWO0O0550



FILE: NEWMARK FORTRAN A  OLD DOMINION UNIVERSITY -- CMS -- 4.2

_ NEW00560

TIME=0.0 NEW00570

WRITE (2,1) : NEW00580

H=L/NUMEL NEW00590

] FORMAT (/1X,'THIS 1S NEWMARKS SOLUTION') : NEW00600

WRITE (2,1059) K1 NEW00610

1059 FORMAT (/1X,'STIFFNESS -- ',D16.9) NEW00620

WRITE (2, 1060) ZETA NEW00630

1060 FORMAT (/1X, 'DAMPING ---- ',D16.9) ' NEW0OO6L40

WRITE (2,1061) PO NEW00650

1061 FORMAT (/1X,'FORCE ------ 1,016.9) NEW00660

WRITE (2,1062) OMEGA NEW00670

1062 FORMAT (/1X,'FREQUENCY -- ',D16.9) NEW00680

NEW00690

N=2#%NUMEL+2 NEW00700

NEW00710

c WRITE (2,176) NEW00720

c WRITE (2,177) NEW00730

' _ , NEWOO7LO

DO 10 I=1,N NEW0O0750

D0 10 J=1,N ' NEW00760

10 K(1,J)=0.0 NEW00770

NEW0O0780

NEWO0790

K(1,1)=1000 ) NEW00800

K(N-1,N~1)=1000 NEW00810

: ' NEW00820

' NEW00830

K(2,2) =ExX1%L %K1/ (H% (K1+1.)) NEWO0840

K(2,3)=(=1.) %3 XE&X1%2.%K1/ ((H%%2) % (K1+1.)) NEW00850

K(2,4) =ExXi%2.%K1/ (H% (K1+1.)) : NEW00860

- K(3,2)=K(2,3) NEW00870

K(3,3)=3.%E&XI% (L. %XK1+1. )/((H**3)*(K]+l )) - NEW00880

K(3,4)=(=3.) *ExXI1% (2. %K1+1.) / ((H%%2) * (K1+1.)) NEW00890

K(b,2)=K(2,4) NEW00900

K(L4,3)=K(3,4) NEWO0S10

K (b, b4) =E%X 1% (b, %kK1+3.) / (% (K1+1.)) NEW00920

NEW00930

NEWOO9LO

K(N-3,N=3) =3 . %ExX | % (L. %K2+1.) / ((H*%3) x (K2+1.)) NEW00950

K(N-3,N=2)=(3.) ®E%X 1% (2.%K2+1.) / ((H®%2) * (K2+1.)) . NEW00960

K{(N-3,N)=6. *E*XI*KZ/((H**Z)*(K2+1 )) NEW00970

K(N-2,N-3)=K (N-3,N-2) : _ . NEW00980

K(N-2,N-2)=E%X|*(L,%K2+3.) / (H% (K2+1.)) . NEW00990

K (N-2,N) =2, %E%X1%K2/ (H* (K2+1.)) , NEW01000

K (N,N=-3)=K (N-3,N) NEWO1010

K(N,N-2)=K (N-2,N) NEW0O1020

K (N,N) =E®X 1%L, %K2/ (H¥* (K2+1.)) NEWO1030

- NEWO10L0

NEWO 1050

' NEWO 1060

KEL(1,1) = 12.%E%X]/ (H%%3) NEW01070

KEL (1,2) = 6.%E%X|/ (H*%2) NEW01080

KEL(1,3) = (-1.)*KEL(1,1) NEWO1090
KEL(]”'O) =

KEL (1,2) : NEWO1100
92 '



FYLE: NEWMARK FORTRAN A  OLD DOMINION UNIVERSITY -- CMS -- 4.2

KEL(2,2) = L.%ExX1/(H) - NEWO1110

KEL(2,3) = (-1.)*KEL(1,2) NEWOT1120

KEL (2,4) = KEL(2,2)/2. _ NEWO1130

KEL(3,3) = KEL(1,1) . NEWO1140

KEL (3,4) = KEL(2,3) NEWO1150

KEL (4,4) = KEL(2,2) NEWO 1160

‘ NEWO1170

1F(K(2,2) .LE.0.00001) K(2,2)=1.0 NEWO1180

CIF(K(N,N) .LE.0.00001) K(N,N)=1.0 NEWO1190

DO 30 I=1,kL NEWO 1200

DO 30 J=1,k NEWO1210

30 IF(J.GT.I)YKEL (J,1)=KEL(1,J) NEW0O1220

o NEW0O1230

DO 50 JK =2,NUMEL-1 NEWO12L0

I 1=JK*2-2 . : NEWO1250

JJ=11 . NEWO1260

DO 45 1=1,b4 NEW01270

DO LO J=1,b4 . _ NEWO1280

NEWO1290

K(LI+1,dJ4d) = K(11+1,JJ+J) +KEL (1,J) ‘ NEWO1300

NEWO1310

LO  CONTINUE NEW01320

L5  CONTINUE _ NEWO1330
50  CONTINUE : NEWO1340 -

NEWO 1350

66 DO 75 I=1,N NEWO 1360

D0 70 J=1,N , NEWO1370

M(1,J)=0.0 NEWO 1380

c(1,J)=0.0 NEWO1390

70  CONTINUE NEWO 1400

75  CONTINUE : : NEWO1410

. . NEWO1420

M{1,1) =39, : , NEWO 1430

M(2,2) =H#%*2 - NEWO1L4ko

M(N-1,N-1)=39. , ' NEWO 1450

M (N, N) =H%*2 NEWO 1460

- NEWO1470

DO 80 1=3,N-3,2 NEWO 1480

J=i+1 : ' NEWO 1490

M(1,1)=78. ’ NEWO 1500

M(J,d)=2.% (H**x2) NEWO1510

80  CONTINUE NEW01520

NEWO1530

DO 90 I=1,N . NEWO 1540

90  M(1,1)=M({l,1)*(ROW*H/78.) : NEWO 1550

CALL JACOBI! (K,M,N, |IFPR,X,EIGV) : NEWO 1560

DO 95 I=1,N . NEWO1570

95  DAMRAT (1) =ZETA NEW0O1580

, NEWO 1590

CALL DAMP (N,EIGV,X,M,DAMRAT,C) - NEW01600

' NEW0O1610

- NEW01620

PRINT#*,'IN START' - NEWO1630

' NEWO 1640

Do 300 I=1,N NEWO 1650

93



FILE: NEWMARK FORTRAN A  OLD DOMINION UNIVERSITY -- CMS -- 4.2

300 RT(1)=0.0 | NEWO 1660

PI=ACOS (-1.0) : NEW01670

RT (N/2) =P0%* (DCOS (OMEGA*T I ME) ) ’ NEWO1680

: ' ' NEWO1690

CALL INVERT (M,MINV,N) NEWO1700
NEWO1710

DO 333 I=1,NUMEL+] NEWO1720
DUMI=K 1%L/ (4*PI*E%X!) NEWO1730
CZ=PI%H% (1-1) /L : NEWO 1740

UT (2%1) = (DELO/ (1 +DUMI*2))*((PI/L*DCOS(Z))+(DUM1*2*PI/L*DSIN(Z*Z) NEWO1750

&) *NEWO 1760

UT (2%1-1)=(DELO/ (1.+DUM1%2) ) * (DSIN (Z) +DUM1% (1.-DCOS (2%2) )) NEW01770

333  CONTINUE NEWO1780
DO 302 (=1,N NEWO 1790
SUM=0.0 : _ NEWO 1800

DO 301 J=1,N ) NEWO1810

301 SUM-SUM+K(I JY*UT (J) % (-1.) NEWO 1820
302 DUM(1)=SUM NEW0O1830
‘ : NEWO18L0

DO 306 I=1,N ’ NEWO1850
SUM=0.0 : ' NEWO 1860

DO 305 J=1,N NEW01870

305 SUM=SUM+MINV (1,J) *DUM (J) ) NEWO 1880
306 UDDT (1) =SUM o NEWO1890
_ NEWO 1900

DO 310 I=1,N NEWO1910

UDT (1)=0.0 NEW01920

310 CONTINUE NEW01930
' NEWO1940

PRINT*, 'OUT START' NEWO 1950

NEWO 1960

DO 320 I=1,N : NEW0O1970

DO 320 J=1,N NEWO1980

320 Cti(l,J)= K(I J) +GAMA%C (I, J)/(BETA*TS)+M(I J)/(BETA*(TS**Z)) NEW0O 1990
CALL INVERT(C1,C2,N) NEW02000

120 DO 122 I=1,N NEW02010
C3(I)=(GAMA/(BETA*TS))*UT(I)+(GAMA/BETA-1.0)*UDT(I)+TS*((GAMA/(BE NEW02020
§TA%2,)) -1.0) *UDDT (1) NEW02030
NEW020L0

Ch (1)=UT (1) / (BETAX (TS%*2))+UDT (1) / (BETA*TS)+ ((1./(2.%BETA)) -1.0) *UNEW02050

§0DT (1) NEW02060

122 CONTINUE o NEW02070
_ NEW02080

DO 130 I=1,N : NEW02090
SUM=0.0 . NEW02100

DO 125 J=1,N NEW02110

125 SUM=SUM+C (I,J) *C3 (J) ' NEW02120
130 C5(1)=SUM : NEW02130
, NEW021L40

DO 410 1=1,N ) NEW02150
SUM=0.0 : NEW02160

DO 40O J=1,N . ‘NEW02170

LOO SUM=SUM+M (I ,J) *CL (J) : NEW02180
L10 C6(1)=SUM NEW02190
: ‘ NEW02200
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DO 420 I=1,N ‘ NEW02210
L20 F (1) =RT(1)+c5(1)+C6 (1) ‘ NEW02220
NEW02230
DO 430 1=1,N NEW02240
SUM=0.0 NEW02250
DO 425 J=1,N NEW02260
4,25 SUM=SUM+C2 (1,J) *F (J) ‘ NEW02270
L30 UTP (1)=SUM NEW02280
NEW02290
ICOUNT=1COUNT+] NEWO02300
TIME=TIME+TS NEW02310
. IF (TIME.GT.1.00)G0 TO 199 , NEW02320
RT (N/2) =PO* (DCOS (OMEGAXT I ME)) NEW02330
GO TO 200 - NEWO2340
199 RT(N/2)=0.0 NEW02350
200 EXACT=0.0 NEW02360
JEST=1 NEW02370
IF (ICOUNT.EQ.10)GO TO 141 . NEW02380
GO TO 143 NEW02390
141 WRITE(2,175) TIME,UTP (N/2) ,JEST NEW0240O
| COUNT=0 : NEWO2410
NEW02420
143 DO 150 I=1,N NEW02430
UDDTP (1) =(UTP (1) -UT (1) - (TS*UDT (1)) - ((TS#%*2) % (0.5-BETA) *UDDT (1)) ) *NEWO2LLO
&(1./ ((TS%%2) *BETA)) NEW0O2L50
150 CONTINUE NEW02460
’ NEWO2470
DO 161 i=1,N NEWO2L480
UDTP (1) =UDT (1)+TS*(((1.0- GAMA)*UDDT(I))+(GAMA*UDDTP(I))) . NEW02490
UT (1) =UTP (1) NEW02500
upT (1) =UDTP (1) : NEW02510
uDDT (1) =uDDTP (1) NEW02520
161 CONTINUE NEW02530
IF(TIME.GT.TT)GO TO 500 NEW02540
' NEW02550

GO TO 120 _ NEW02560
175 FORMAT(F10.8,1X,F10.8,1X%,11) NEW02570
176 FORMAT (/1X,' TIME DEFLECTION AT L/2') NEW02580
177 FORMAT (' =—m—=—mm e e oo e e e e NEW02590
| fmmmmmmm———e 1) ‘ NEW02600
500 STOP NEW02610
END NEW02620
' NEW02630
NEW0O26L0O
SUBROUTINE INVERT (AO,A,N) : NEW02650
DOUBLE PRECISION A(70,70),A0(70,70) NEW02660
NEW02670
po 1 t=1,N NEW02680
DO 1 J=1,N NEW02690
1 A(1,J)=A0(1,J) : ' NEW02700
. » NEW02710
NP=N+1 NEW02720
AQ,NP)=1.0 ‘ NEW02730
D0 10 I=2,N , NEWO27L0
10 A(I,NP)=0.0 ’ NEW02750
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, NEW02760

DO 4O J=1,N . - NEW02770

DO 20 LX=1,N , NEW02780

20 A(NP,LX)=A(1,LX+1) /A (1,1) NEW02790
D0 30 KX=2,N NEW02800

0O 30 LX=1,N NEW02810

30 A (KX=1,LX)=A(KX,LX+1) -A (KX, 1) %A (NP, LX) NEW02820
DO 40 LX=1,N NEW02830

Lo A(N,LX)=A(NP,LX) NEWO28L0
NEW0D2850

RETURN » ' NEW02860

END NEW0O2870
SUBROUTINE JACOBI (K,M,N, IFPR,X,EIGV) NEW02880

o SUBROUT INE JACOBI NEW02890
IMPLICIT REAL*8(A-H,0-2) NEW02900
DOUBLE PRECISION A(70,70),B(70,70),X(70,70) ,EIGV(70),D(70), NEW02910

gk (70,70) ,M(70,70) NEW02920

| FPR=0 NEW02930

c COMMON/K, M/ ' " NEWO29LO
o WRITE (2,1051) , , ' NEW02950
C1051 FORMAT (/1X,' [INPUT DATA ') NEWO2960
c READ (1,%)N, | FPR : A NEW02970
o WRITE (2,1001)N, I FPR NEWO2980
o DO 1010 i=1,N _ - " NEW02990
c READ (1,%) (A (1,J),J=1,N) : NEWO 3000
o WRITE(2,1110) (A(1,d) ,d=1,N) NEWO3010
C1010  CONTINUE NEW03020
o DO 1020 I=1,N ' _ NEWO3030
o READ (1,%) (B (1,J),J=1,N) NEWO 3040
o WRITE (2,1110) (B(1,J),J=1,N) NEWO3050
C1020  CONTINUE . NEWO3060
C1001 FORMAT (2110) ' NEWO3070
Cl1110 FORMAT (8F10.4L) NEWO3080
DO 2 I=1,N ’ NEWO 3090

00 1 J=1,N ‘ NEWO3100
A(l,Jd)=K{1,J) NEWO3110
B(I,J)=M(1,J) : NEWO3120°

] CONTINUE NEW03130
2 CONTINUE , NEWO3140
NSMAX=15 , ' NEWO3150

c WRITE (2,1980) ‘ . NEWO3160
1980 FORMAT(/1X,'  EIGENVALUES ') ' NEWO3170
RTOL=1.D-12 NEW03180
fouT=2 ~ NEWO3190

DO 10 I=1,N NEW03200
IF(A(I,1) .GT.0.AND.B(1,1) .GT.0.)GO TO & NEWO3210

WRITE (10UT, 2020) , NEW03220

STOP ' NEW03230

b D()=A(I,1)/B(1,1) NEWO32L40
10 EIGV(1)=D(1) , : NEWO3250
DO 30 I=1,N . NEW03260

DO 20 J=1,N NEWO3270

20  Xx(1,J)=0. _ NEW03280
30 X(i1,1)=1.0 NEW03290

IF(N.EQ.1)RETURN - NEW03300
' 56
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. .

C INITIALIZE SWEEP COUNTER AND EIGEN ITERATION

C

Lo

O

c

211
212

50
60

70

80

90
100

110

120
130

NSWEEP=0

NR=N-1

NSWEEP=NSWEEP+]

IF (IFPR.EQ.1)WRITE (10UT, 2000) NSWEEP
PRINT*,' SWEEP NUMBER... ' ,NSWEEP

CHECK IF PRESENT OFF DIAGONAL ELEMENT IS TOO LARGE

EPS=(0.01%XNSWEEP) %2

D0 210 J=1,NR

JJ=J+1

DO 210 K1=JJ,N (
'F (DABS (A(J,K1)).LT.1.D~20)GO TO 211
EPTOLA=(A(J,K1) %A (J,K1)) /(A (J,J) ®A(K1,K1))
GO TO 212

EPTOLA=0.0

EPTOLB=(B (J,K1) *B (J,K1)) /(B (J,J) *B (K1,K1))
}F ((EPTOLA.LT.EPS) .AND. (EPTOLB.LT.EPS)) GO TO 210
AKK=A (K1,K1) *B (J,K1) -B (K1,K1) *A (J,K1)
AJJ=A(J,Jd) *B (J, K1) -B (J,J) *A (J,K1)
AB=A (J,J) *B (K1,K1) ~A(K1,K1) *B (J,J)
CHECK= (AB*AB+L . *AKK*AJJ) /L.

{F (CHECK) 50,60, 60

WRITE (10UT, 2020)

STOP

SQCH=DSQRT (CHECK)

D1=AB/2.+SQCH

D2=AB/2.-SQCH

DEN=D1

IF (DABS (D2) .GT.DABS (D1)) DEN=D2

| F (DEN) 80, 70,80

ca=0.

CG=(-1.) %A (J,K1) /A (K1,KT)

GO TO 90

CA=AKK/DEN

CG=(-1.) *AJJ/DEN

IF (N-2) 100,190, 100

JP1=J+1

JMI=J-1

KP1=K1+1

KM1=K1-1

IF (JM1-1) 130,110,110

DO 120 I=1,JM]

AJ=A(1,J)

BJ=B (1,J)

AK=A (I ,K1)

BK=B (I ,K1)

A(1,J) =AJ+CGRAK

B (I1,J) =BJ+CG*BK

A(!,K1)=AK+CA*AJ

B (i,K1)=BK+CA*BJ 97
IF(KP1-N) 140,140, 160

NEWO3310
NEW03320
NEWO03330
NEWO3340
NEW03350
NEW03360
NEW03370
NEW03380
NEW03390
NEWO 3400
NEWO3410
NEWO3420
NEWO 3430
NEWO 3440
NEWO3450
NEWO 3460
NEWO3470
NEWO 3480
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NEW03500
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NEWO3540
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160
170

180
190

C
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DO 150 I=KP1,N

AJ=A(J,1)

BJ=B (J, |)

AK=A (K1, 1)

BK=B (K1, 1)

A(J, 1) =AJ+CG*AK

B (J, [)=BJ+CG*BK

A (K1, 1) =AK+CA%AJ

B(K1,|)=BK+CAXBJ

IF (JP1-KM1) 170,170,190

DO 180 I=JP1,KMI

A=A (J, 1) )

BJ=B (J, 1)

AK=A (I,K1)

BK=B (1,K1)

A(J, 1) =AJ+CG*AK

B (J,1)=BJ+CG*BK

A(l,KT) =AK+CA%AJ

B(l,K1)=BK+CA%BJ

AK=A (K1,K1)

BK=B (K1,K1)

A(K1,K1) =AK+2.%CA%A (J,K1)+CA*CA*A (J, J)
B(K1,K1)=BK+2.%CA*B (J,K1)+CA%CA*B (J,J)
A(J,J)=A(J,J)+2.%CG*A (J,K1) +CG*CG*AK
B(J,J)=B(J,J)+2.%CG*B (J,K1) +CG*CG*BK
A(J,K1)=0.

B(J,K1)=0.

C UPDATE EIGENVECTOR MATRIX

¢

200
210
c

DO 200 I=1,N
XJ=X (1,J)
XK=X(1,K1)
X(1,J)=XJ+CG*XK
X (1,K1) =XK+CA%XJ
CONTINUE

C UPDATE EIGENVALUES

c

220

c

D0 220 t=1,N
IF(A(I,1).GT.0.AND.B(I,!).GT.0)GO TO 220
WRITE (10UT, 2020)

STOP

EIGV(1)=A(t,1)/B(1,1)

IF(1IFPR.EQ.0) GO TO 230

WRITE (10UT, 2030)

WRITE (10UT,2010) (EIGV(l),I=1,N)

C CHECK FOR CONVERGENCE

c
230

240

DO 240 I1=1,N
TOL=RTOL*D (1)

DIF=DABS (EIGV(1)-D (1))
IF(DIF.GT.TOL)GO TO 280
CONT INUE

98
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CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D

EPS=RTOL*%2
DO 250 J=1,NR
JJ=J+1
DO 250 K1=JJ,N
| F (DABS (A(J,K1)) .LT.1.D-30)G0 TO 251
EPSA=(A (J,K1) %A (J,K1)) /(A (J,J) %A (K1,K1))
GO TO 252 :

251 EPSA=0.0

252 EPSB=(B(J,K1)%B(J,K1)) /(B (J,J)*B(K1,K1))
IF((EPSA.LT.EPS) .AND. (EPSB.LT.EPS)) GO TO 250
GO TO 280

250  CONTINUE

FILL OUT BOTTOM TRIANGLE.OF RESULTANT MATRICES & SCALE EIGENVECTORS.

255 DO 260 I=1,N
DO 260 J=1,N
A{J, 1)=A(1,J)
260 B(J,1)=B(1,J)
D0 270 J=1,N
BB=DSQRT (B (J,J))
DO 270 K1=1,N
270 X (K1,J)=X(K1,J) /BB
WRITE (10UT, 310)
DO 300 1=1,N
300 WRITE (10UT,2010) (X (1,J),J=1,N)
310 FORMAT(/1X,' THE E!GENVECTORS ARE ')

RETURN
UPDATE THE 'D' MATRIX AND START NEW SWEEP IF ALLOWED

280 DO 290 I=1,N -
290 D(1)=EIGV(I)

tF (NSWEEP.LT.NSMAX)GO TO 40
GO TO 255
2000 FORMAT (/1X,' SWEEP NUMBER IN JACOBI = ',ik)

2010 FORMAT (/1X,6E20.12)

2020 FORMAT (/1X,' %%%x ERROR SOLUTION STOP / MATRICES NOT POSITIVE
EDEFINITE')- ' _
2030 FORMAT (/1X,' CURRENT EIGENVALUES IN JACOBI ARE ')
END

SUBROUTINE DAMP (N,EIGV,X,M,DAMRAT,C)
IMPLICIT REAL*8(A-H,0~2)

NEWOLL10
NEWOLL20
NEWOLL30
NEWOLLLO
NEWOLL50
NEWOLL60
NEWOLLTO
NEWOLL8O
NEWOLLIO
NEWOL500
NEWOL510
NEWOL520
NEWOL530
NEWOL5LO
NEWOL550
NEWOL560
NEWOL570
NEWOL580
NEWOL590
NEWOL600
NEWOL610
NEWOL620
NEWOL630
NEWOL6LO
NEWOL650
NEWOL660
NEWOL670
NEWOL680
NEWOL690
NEWOL700
NEWOL710
NEWOL720
NEWOL730
NEWOL74LO
NEWOL750
NEWOL760
NEWOL770
NEWOL780
NEWOL790
NEWOL800
NEWO4810
NEWOLB20
NEWOL830
NEWOLBLO
NEWOL850
NEWOL860
NEWOL870
NEWOL880
NEWOL890
NEWOL900
NEWOLQ10

DOUBLE PRECISION X(70,70),T(70,70),M(70,70),C(70,70) ,EIGV(70) ,DAMRNEWOL920

EAT (70)

DO 10 I=1,N
99
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10

20

30

Lo

c50
120
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EIGV (1)=DSQRT(EIGV(I))
DO 10 J=1,N
c(1,J)=0.0

00 20 ti=1,N
DA=2.*DAMRAT (1 1) *EIGV (1)

DO 20 I|=1,N

D0 20 J=1,N
C(,d)=C(1,I)+X (1, 11)%X(J,11)*DA

DO 30 |
DO 30 J=
T(,J)=0.0

D0 30 K1=1,N

1,N
1,N

T, =T(,d)+M(1,K1)*C(K1,J)

DO 40 |I=1,N

DO 4O J=1,N

c(l,J)=0.0

DO 40 Ki=1,N
C(1,d)=C(I,d)+T (1,K1) %M (K1,J)

DO 50 I=1,N

WRITE (2,120) (C(1,d),J=1,N)
FORMAT (6D 14 . L)

RETURN

END

100

NEWOL960
NEWOL970
NEWOL980
NEWOL990
NEWO5000
NEWO5010
NEW05020
NEW05030
NEWO50L0
NEWO5050
NEW05060
NEWO5070
NEW05080
NEWO5090
NEWO5100
NEWO5110
NEWO5120
NEWO5130

. NEWO5140

NEWO5150
NEWO05160
NEWO5170
NEWO5180
NEWO5190
NEW05200
NEWO5210
NEWO5220
NEW05230
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ILE: DAVE

out

THIS 1S NEWMARKS SOLUTION

.07560742
.07411487
.07822479
.07755833
.07321689
.07439081
.07596175
.07030083
.06480695
.06403831
.05838368
.04628549
.03770042
.030L4L851
.01549482
.00155219
.01381828
.02866951
.04917751
.06667677
.08058453
.09807491
.11601054
.12788046
.13797468
. 14964225
.15657816
.15730855
.15770900
.15621028
14753221
.13531903
.12327482
.10672159
.08461688
.06275240
.04085973
.01462197
.01269540
.0367364L8
.06085743
.08652612

[eNeeNeoloNeoleoNeNoNoNoNoNoNeNoNeNoNoNoNeNoNoNolNeoNoNoleoNoNolNeNeNe oo NoNeNoNoNoNeo o e

STIFFNESS

DAMPING ----

0.531100006D+02

0.130999982D-01

0.400000066D-02

FREQUENCY -- 0.2513000490+02

.00500000
.01000000
.01500000
.02000000
.02500000
.03000000
.03500001
.04000001
.04500001
.05000001
.05500001
.06000001
.06500001
.07000001
.07500001
.08000001
.08500001
.09000001
.09500002
.10000002
. 10500002
.11000002
. 11500002
.12000002
.12500002
.13000002
. 13500002
.14000002
. 14500002
.15000002
.15500003
.16000003
. 16500003
.17000003
.17500003
.18000003
.18500003
.19000003
.19500003
.20000003
.20500003
.21000003

DEFLECTION

AT L/2

" A OLD DOMINION UNIVERSITY -- CMSL 4.0 8706
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IMPLICIT REAL*8 (A-H,0-2) CENOOO10
CENO0020

CENO0030

c THIS PROGRAM SOLVES FOR THE DEFLECTIONS OF A BEAM CENOOOLO
- CENO0O50

c SUBJECT TO A FORCING FUNCTION AT THE MIDPOINT CEND0060
CENO0070

c USING CENTRAL DIFFERENCE METHOD CENO0080
. ' CENO0090

CENOO100

CENOO110

DOUBLE PRECISION L,K1,K2,K(70,70),M(70,70),C(70, 7o) U(70) ,UTN (70) ,CENOO120

&RT (70) , C1 (70,70) ,C2 (70,70) ,C3 (70,70) ,Ch (70) ,KEL (b, 4) , B (70) , C5 (70) , CENOO130

SDUM (70) , UT (70) , MINV (70,70) , C6 (70,70) , X (70,70) ,EIGV (70) , DAMRAT (70) , CENOO 140

&UDDT (70) CENOO 150

| FPR=0 CENOO160
Cohdedekededededefendesedekekk®x SET CONSTANT DATA fedede oot dededededlest ke dledede ek CENOO170
C¥ike ek CENOO0180
Cx% L = LENGTH (IN) ’ ki CEN00130
C#% %k CENO0200
Cx%x NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER) *% CENOO210
CH¥% %k CENO0220
Cx% TS = TIME STEP; DELTA 'T' (SEC) Yk CENOO230
Chx %k CENOD2LO
Cx%x ROW = MASS PER UNIT LENGTH (KIP#SEC**Z/IN**Z) %k CENOO250
Ck* ek CEN00260
Cx% E = MODULUS OF ELASTICITY (KSI) %k - CENO0270
Ck%* %k CEN00280
Cx¥% X1 = MOMENT OF INERTIA  (IN%*L) ) %% CENO0290
C#* ) . %k CENOO300
Cx% AR = AREA  (IN#*#*2) . E3 3 CENOO310
Cik ' deik CEN00320
Cx% K1 = ROTATIONAL STIFFNESS AT END 1 (K*IN/RAD) e CENO0O330
Ck* ' ek CENOO3LO
Cx%x K2 = ROTATIONAL STIFFNESS AT END 2 (K*IN/RAD) Rk CENOO350
Cie¥ Yk CENOO360‘
Cxk ZETA = DAMPING RATIO %k CENOO370
CH¥* : %k CEN00380
Cx¥% TT = TOTAL TIME FOR PROGRAM EXECUTION (SEC) %k CENOO390
CH% ek CENOOLOO
Cx% PO = MAGNITUDE OF THE FORCING FUNCTION (KIPS) %%k CENOOL10
Cxe% e CENOOL20
Cx% OMEGA = FREQUENCY OF THE FORCING FUNCTION (HZ) ’ Yed CENOOL 30
Chse fek CENOOLLO
Ch* e CENOOLEO
Cededcdefedeftdeeede e R dddefefefefdeqhfedefddefededfedesededededededededededededededede o ddededede e hdededede _ CENOOLG0O
- CENOOL70

CENOOL8O

’ ' CENOOLSO

DATA L,NUMEL,TS.ROW/|77.,]2,0.000]0,]8].95270-09/ CENOO500

DATA E,X!,AR/10000.,.325,.7363/ CENOO510

DATA K1,K2,TT/00.000,00.000,4.00/ CENOO520

DATA PO,OMEGA,ZETA/0.00,0.000000000,0.0000/ o CENOO530

1 COUNT=0 CENOO540
CENOO550

102
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TIME=0.0 CEN00560
_ . CEN00570
H=L/NUMEL CEN00580
. CENO0590
N=2*NUMEL-2 ' CEN00600
CEN00610
Do 10 I=1,N CEN00620
DO 10 J=1,N CEN00630
10 K(1,4)=0.0 CENOO6LO
CEN00650
K(1,1) =3 %ExX) % (L.%K1+1.) / ((H%%3) % (K1+1.)) CENOO660
K(1,2)=(=1.) %3 . %E%Xi% (2. %K1+1.) / ((H*¥%2) % (K1+1.)) CEN00670
K(2,)=k(1,2) CEN00680
K(2,2)=ExX1% (4. %K1+3.) / (H* (K1+1.)) CEN0O0690
‘ CEN00700
K(N=1,N=1) =3 %E%X 1% (h.%K2+1.) / ((H#%*3) % (K2+1.)) CENOO710
K(N=1,N)=3.%ExX 1% (2.%K241.) / ( (H%*2) % (K2+1.)) CEN00720
K(N,N=-1)=K (N-1,N) CENOO730
K (N,N) =E#X1% (4, %K2+3.) / (H*(K2+1.)) CENOO74O
CEN0O750
KEL(1,1) = 12,.%E*X|/ (H%%3) , CENOO760
KEL (1,2) = 6.%E%xX1/ (H%x2) , CEN00O770
KEL(1,3) = (-1.)%KEL(1,1) CEN00780
KEL(1,4) = KEL(1,2) A , CEN00O790 °
KEL(2,2) = L.*xE%X1/(H) CEN00800
KEL(2,3) = (-1.)*KEL(1,2) CEN0OO810
KEL (2,4) = KEL (2,2)/2. CEN00820
KEL(3,3) = KEL(1,1) " CEN00830
KEL (3,4) = KEL(2,3) CENOO8LOD
KEL (k,4) = KEL(2,2) - CEN00850
CENO0860
DO 30 I=1,4 CENO0870
DO 30 J=1,k4 CENOO88O
30 IF(J.GT.I)KEL (J,1)=KEL (1,J) CENO0890
‘ CENO0S00
DO 50 JK =1,NUMEL-~2 CENO0910
[ 1=JdK*2-2 . CEN00920
Jd=11 CEN00930
DO 45 I=1,4 CENOO9LO
D0 40 J=1,4 CENO0950
CENO0960
K(LI+1,dd4d) = K11+ ,dJd+J) +KEL (1 ,J) CEN00970
CEN00980
LO  CONTINUE CENO0990 -
L5  CONTINUE , CENO1000
50  CONTINUE ' CENO1010
: ' ‘ CENO1020
C**********************k***********k************************************CENO]030
: : CENO1040
C THIS 1S A TEST OF THE STIFFNESS MATRIX FOR THE STATIC LOAD CASE CENO1050
‘ CENO1060
o DO 61 I1=1,N CENO1070
€61 RT(1)=0.0 CENO1080
o RT(N/2)=.10 ' CENO1090
c CALL INVERT(K,C6,N) CENO1100
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DO 63 I=1,N ~ CENOTI110

o

o SUM=0.0 . CENO1120

o Do 62 J=1,N CENO1130

C62  SUM=SUM+C6 (1,J) *RT (J) CENO1140

"C63  U(l)=SUM CENO1150

o D0 65 1=1,N . : CENO1160

C - PRINT%,'DEFLECTION AT NODE ',I,' IS ',U(1) CENO1170

C65 WRITE(2,64)1,U(1) CENO1180

CéL  FORMAT(/1X,'STATIC SOLUTION... U(',!12,') = ',D23.16) CENO1190

C GO TO 500 CENO1200

c CENO1210

Clesedededfededededededesesededededesededoedeedefttfedefededededefeede Nk kS de R fededh e de SRt e KNn R nfekhn CENO1220

: CENO1230

66 DO 75 I=1,N CENO124O
DO 70 J=1,N CENO1250

M(1,J)=0.0 CENO1260

c(i,J)=0.0 : CENO1270

70  CONTINUE : ‘ CENO1280

75  CONTINUE , CENO1290

' CENO1300

CENO1310

Do 80 1=1,N-1,2 CENO1320

J=1+1 . . : CENO1330

Mm(1,1)=78. : CENO1340

M(J,J)=2.% (H%*%2) CENO1350

80 CONTINUE CENO1360

: CENO1370

DO 90 I=1,N ' , _ CENO1380

90  M(1,1)=M(1,1)%(ROW%H/78.) ' CENO1390

CENO1L40O

c po 100 I=1,N ' CENOTL10

| FPR=0 CENO1420

CALL JACOBI (K,M,N, IFPR,X,EIGV) : CENO1430

: CENO14L4O

DO 100 I=1,N CENO1450

100  DAMRAT (1) =ZETA CENO1460

. CENO1470

CALL DAMP (N,EIGV,X,M,DAMRAT,C) , CENO1480

CENO1490

CENO1500

CENO1510

C100 C(1,1)=ZETA CENO1520

CENO1530

Chxdksx PRINT STIFFNESS, MASS, AND DAMPING MATRICES - sdedesedescdededess CENO15L40

o . ) CENO1550

o WRITE (2,220)N/2 ' - CENO1560

o DO 210 1=1,N CENO1570

€210 WRITE(2,215) (K(1,J),Jd=1,N/2) CENO1580

o WRITE (2,221)N/2 CENO1590

o DO 211 I=1,N : CENO1600

€211 WRITE(2,215) (K(1,J),J=N/2+1,N) CENO1610

o WRITE (2,222)N/2 CENO1620

c D0 212 I=1,N CENO1630

C212 WRITE(2,215) (M(1,J) ,J=1,N/2) .CENO1640O

o WRITE (2,223)N/2 CENO1650
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o D0 213 I=1,N CENO1660
C213 WRITE(2,215) (M(1,J),J=N/2+1,N) CENO1670
o WRITE (2,224)N/2 CENO1680
o DO 214 I=1,N CEN01690
C21L WRITE (2,215) (C(1,J),J=1,N/2) . CENO1700
o WRITE (2,225)N/2 CENO1710
o Do 216 I=1,N _ CENO1720
C216 WRITE(2,215) (C(1,J),J=N/2+1,N) ' CENO1730
A } CENO1740
215 FORMAT(/1X,5D14.7) CENO1750
’ CENO1760

220 FORMAT(/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF K ') CENO1770
221 FORMAT(/1X,'THESE ARE THE LAST ',13,' COLUMNS OF K ') CENO1780
222 FORMAT(/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF M ') CENO1790
223 FORMAT (/1X,'THESE ARE THE LAST ',13,' COLUMNS OF M ') CENO1800
22L  FORMAT(/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF C ') CENO1810
225 FORMAT (/1X,'THESE ARE THE LAST ',13,' COLUMNS OF C ') CENO1820
' CEN01830

CENO1840

PRINT#,'IN START' CEN01850
CENO1860

DO 300 I=1,N CENO1870

300 RT(1)=0.0 ‘ . CENO1880
, . CENO1890

o RT (N/2) =PO%* (DSIN (OMEGA*®T I ME) ) CENO1900
CEN01910

CALL INVERT (M,MINV,N) CEN01920

' CENO1930

. CENO19L40

PI=ACOS (-1.0) . ~ CEN01950

DO 333 I=1,NUMEL CEN01960

. Z=PI%H*|/L CENO1970
UT(2%1)=(.1563/ (1.+DUM1%2)) % ((PI/L*DCOS (Z) ) + (DUM1%2%P1 /L*DS N (2%*Z) CENO1980

&) : CENO1990
UT(2%1-1)=(.1563/ (1.4DUM1%2)) * (DSIN (Z)+BUM1% (1.-DCOS (2*Z))) " CEN02000

333 CONTINUE CEN02010
o DO 334 I=1,N N CEN02020
C334 PRINT%, 'UT(',1,') = ',uT (1) CEN02030
: : CEN020L4O

CEN02050

CEN02060

DO 302 I=1,N CEN02070
SUM=0.0 CEN02080

DO 301 J=1,N CEN02090

301 SUM=SUM+K (1,J) *UT (J) % (-1.0) : CEN02100
302 © DUM(I)=SUM CENO2110
' CEN02120

DO 306 I=1,N CEN02130
SUM=0.0 CENO2140

D0 305 J=1,N CEN02150

305  SUM=SUM+MINV (I, J) *DUM (J) ‘ CEN02160
306  UDDT (1) =SUM -CENO2170
: ' CEN02180

DO 303 I=1,N , CEN02190

303  UTN(1)=UT (I1)+UDDT (I) * (TS*%2) /2. _ CEN02200
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FILE:

€301
€302

C303

310

315
320

€122
123

130

Lo
L4o

131

L
kL2
140

Cl42
149

CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL L.0 8706

po 302 i=1,N

SUM=0.0

DO 301 J=1,N
SUM=SUM+MINV (1, J) *RT (J)
UTN (1) =SUM

Do 303 I=1,N
UTN (1) =UTN (1) * (TS*%2) / (2.0)

DO 310 t=1,N
u(1)=0.0

Ut (1)=0.0
CONTINUE

PRINT#%, 'OUT START'

DO 320 I=1,N

DO 315 J=1,N

CI(1,Jd) = M(1,J)/(TS*%2) + C(1,J)/(2.0%TS)
C2(1,J) = K(1,J) - (2.%M(1,J)/ (TS**%2))
€3(1,4) = (M(1,J4)/(TS*%2)) - (C(1,J)/(2.%TS))
CONTINUE o .
CONTINUE

CALL INVERT(C1,C6,N)

DO 122 I=1,N

WRITE (2,123) 1,C6 (1, 1)

FORMAT (/1X,'THIS IS C6(',12,') ',D023.16)
WRITE (2,176) g
WRITE (2,177)

DO LLO 1=1,N
SUM=0.0
DO 410 J=1,N

WRITE (2,131) TIME,C2(1,J),UT (1)

SUM=SUM+C2 (1 ,J) *UT (J)

Ch (1)=SUM

FORMAT (/1X,'TIME ',F5.3,' C2 ',D18.10,' UT ',D18.10)
DO 442 I=1,N

SUM=0.0

DO 411 J=1,N

SUM=SUM+C3 (I, J) *UTN (J)

C5(1)=SUM

RT (N/2) =PO% (DS IN (OMEGA*T | ME))

DO 14O I=1,N
B(1)=RT(1)-CL(1)~C5(1)

DO 142 1=1,N

WRITE (2,149) 1,B (1) i
FORMAT (/1X,'THIS 1S B(',12,') = ',D23.16)
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CENO2210
CENO2220
CENO2230
CENO22LO
CENO2250
CENO2260
CENO2270
CEN02280
CENO2290
CENO2300
CENO2310
CENO2320
CENO2330
CENO2340
CENO2350
CENO2360

~ CENO2370

CEN02380
CENO2390
CENO24OO
CENO2410
CENO2420
CENO2430
CENO2LLO
CENO2L450
CENO2L60
CENO2470
CENO2480
CENO2L490
CENO2500

- CENO2510

CEN02520
CEN02530
CENO2540
CEN02550
CEN02560
CEN02570
CEN02580
CENO2590
CEN02600
CENO2610
CENG2620
CEN02630
CENO2640
CENO2650
CEN02660
CEN02670
CEN02680
CEN02690
CENO2700
CENO2710
CEN02720
CENO2730
CENO2740
CENO2750



FILE:

c
c

511
542

OO0 0

c199
C199

OO0

14

143

150

175
176
177

500

CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

WRITE (2,176)

WRITE (2,177)
D0 542 [=1,N
SUM=0.0
DO 511 J=1,N
SUM=SUM+C6 (I ,J) *B (J)
U(1)=SUM

| COUNT=1 COUNT+1
TIME=T I ME+TS

SUM=0.0

DO 199 I=1,7,2

X=|

D1=((E*X1/ (ROW* (L¥exl))) %0 ,5) % (X%x2) % (9.86960LLOL)
D2=((DSIN ((X) *3.1459265L4/2.0)) %%2)

D3=1.0-(DCOS (D1*TIME))

SUM=SUM+D2%D3/ (D1%%2)

SUM=SUM+D3/ (D1%%*2)

EXACT=(2.%P0/ (ROWXL) ) *SUM

Di=2.%PO%* (DSIN (OMEGAXTIME) ) % (L**3) / ((3.14592654%%L) REXX )
SUM=0.0

DO 199 I=1,NUMEL-1,2

X=1

SUM=SUM+ (1./ ((X#%¥%kL) -0.25))

EXACT=SUM*D1

LINE=3

IF (1COUNT.EQ.50) GO TO 141

GO TO 143

WRITE (2, 175) TIME,U(N/2) ,LINE
DIF=(U(N/2) ~EXACT) /EXACT

IF (DABS (DIF) .LE.O.15)WRITE (2,177)
| COUNT=0

DO 150 I1=1,N
UTN (1) =UT (1)
utT () =u()

IF(TIME.GT.TT)GO TO 500
GO TO 130
FORMAT (F10.8,1X,F10.8,1X, 11)

FORMAT (/1X,' TIME DEFLECTION AT L/2', 15X, 'EXACT')
FORMAT (' === === == == m o oo e o o e e e e e e

SUBROUTINE INVERT (A0, A,N)
DOUBLE PRECISION A(70,70),A0(70,70)
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CEN02760
CEN02770
CEN02780
CEN02790
CEN02800
CEN02810
CEN02820
CEN02830
CEN02840
CEN02850
CEN02860
CEN02870
CEN02880
CEN02890
CEN02900
CEN02910
CEN02920
CEN02930
CEN02940
CEN02950
CEN02960
CEN02970
CEN02980
CEN02990
CEN03000
CEN03010
CEN03020
CEN03030
CEN03040
CEN03050
CEN03060
CEN03070
CEN03080
CEN03090
CEN03100
CENO3110
CEN03120
CEN03130
CENO3140
CENO3150
CEN03160
CEN03170
CEN03180
CENO3190
CEN03200
CEN03210
CEN03220
CEN03230
CENO3240
CEN03250
CEN03260
CEN03270
CEN03280
CEN03290
CEN03300



FILE:

10

20

30
Lo

1051

OO0 O0OOOOOOO 00

€1020
C1001
c1no

pa—)

1980

1010

CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

DO 1 J=1,N
A(l,J)=A0(1,J)

NP=N+1
A(1,NP)=1.0
DO 10 1=2,N
A (1,NP)=0.0

DO 40 J=1,N

DO 20 LX=1,N

A(NP,LX)=A(1,LX+1) /A1, 1)

DO 30 KX=2,N

DO 30 LX=1,N

A (KX-1,LX)=A(KX,LX+1) -A (KX, 1)*A(NP LX)
DO 40 LX=1,N :

A (N, LX) A(NP LX)

RETURN
END

SUBROUTINE JACOBI (K,M,N, IFPR,X,EIGV)

SUBROUTINE JACOBI

IMPLICIT REAL*8 (A-H,0-2)

DOUBLE PRECISION A(70,70),B(70,70),X(70,70),EIGV(70),D(70),
&K (70,70) ,M(70,70)

{ FPR=0

COMMON/K, M/

WRITE (2,1051)

FORMAT (/1X,' INPUT DATA ')
READ (1,%) N, IFPR
WRITE (2,1001)N, | FPR

DO 1010 I1=1,N
READ (1,%) (A (1,J),J=1,N)
WRITE(2,1110) (A(l,J),J=1,N)

CONTINUE

00 1020 i=1,N
READ (1,%) (B(1,J),J=1,N)
WRITE (2,1110) (B(1,Jd),J=1,N)

CONTINUE

FORMAT (2110)

FORMAT (8F10.4)
0o 2 i=1,N
Do 1 J=I,N
A(l,J)=K(le)
B(l,J)=M(|,J)
CONT INUE
CONT INUE
NSMAX=15
WRITE (2, 1980)
FORMAT (/1X,'  EIGENVALUES ')
RTOL=1.D-12

| OUT=2
Do 10 1=1,N
PRINT%,'FLAG ',I," A= "',A(i,1),"' B = ",B(I,1)
iF(A{I,I).GT.O.AND.B(!,1).GT.0.)GO TO L

~
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CENO3310
CENO3320
CENO3330
CENO3340
CENO3350

CEN03360

CEN03370
CENO3380
CEN03390
CENO3400
CENO3410

CENO3420
CENO3430
CENO34L0
CENO3450
CENO3460
CENO3470
CENO3480
CEN03490
CEN03500
CENO3510
CEN03520
CEN03530
CENO35L0 -
CEN03550
CEN03560
CEN03570
CEN03580
CEN03590

 CENO3600

CENO3610
CEN03620
CENO3630
CENO3640
CENO3650
CENO3660
CENO3670
CEN03680
CENO3690
CENO3700
CENO3710
CENO3720
CENO3730
CENO37L0O
CENO3750
CENO3760
CENO3770
CENO3780
CENO3790
CENO3800
CENO3810
CENO3820
CENO3830
CENO38L40
CENO3850
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10

20
30

c

CENDIF FORTRAN A OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

WRITE (10UT, 2020)

STOP
D(I)=A(1,1)/8(i,1)
EIGV (1)=D(1)

D0 30 I=1,N

00 20 J=1,N
X(1,J)=0.
X(1,1)=1.0

IF(N.EQ.1) RETURN

C INITIALIZE SWEEP COUNTER AND EIGEN ITERATION

c

Lo

(@]

211
212

50
60

70

80

90
100

NSWEEP=0

NR=N-1

NSWEEP=NSWEEP+]
IF(IFPR.EQ.1)WRITE (10UT, 2000) NSWEEP
PRINT*,' SWEEP NUMBER... ',NSWEEP

C CHECK IF PRESENT OFF DIAGONAL ELEMENT 1S TOO LARGE

EPS= (0.0 1%XNSWEEP) %%2

DO 210 J=1,NR

Jd=J+1

DO 210 K1=JJ,N

1F (DABS (A(J,K1)) .LT.1.D-20)GO0 TO 211
EPTOLA= (A (J,K1) %A (J,K1)) /(A (J,J) %A (K1,K1))
GO TO 212

EPTOLA=0.0

EPTOLB=(B (J,K1)*B (J,K1)) /(B (J,J) *B (K1,K1))
IF ((EPTOLA.LT.EPS) .AND. (EPTOLB.LT.EPS))GO TO 210
AKK=A (K1,K1) *B (J,K1) -B (K1,K1) %A (J,K1)
AJJ=A (J,J) *B (J,K1) =B (J,J) *A (J,K1)
AB=A (J,J) *B (K1,K1) ~A(K1,K1) *B (J,J)
CHECK= (AB*AB+4 . ¥AKK*AJJ) /4.

PRINT*, 'THIS IS CHECK... ',CHECK

I F (CHECK) 50,60,60

WRITE (10UT,2020)

STOP

SQCH=DSQRT (CHECK)

D1=AB/2.+SQCH

D2=AB/2.~SQCH

DEN=D1

| F (DABS (D2) .GT.DABS (D)) DEN=D2

I'F (DEN) 80,70,80

CA=0.

Ce=(-1.)*A(J,K1) /A (K1,K1)

GO TO 90 '

CA=AKK/DEN .

CG=(-1.) *AJJ/DEN

IF(N-2) 100,190,100

JP1=J+1

JM1=J-1

KP1=K1+1

KM1=K1-1

IF(JM1-1) 130,110,110
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CEN03860
CENO3870
CEN03880
CEN03890
CENO3900
CENO3910
CENO3920
CENO3930
CENO3940
CENO3950
CEN03960
CENO3970
CENO3980
CEN03990
CENOLOOO
CENOLO10
CENOLO20
CENOLO30
CENOLOLO
CENOLO50
CENOLO60
CENOLO7O
CENOLO8O
CENOLO90
CENOL100
CENOLT10
CENOL120
CENOL130
CENOL1LO
CENOL150
CENOL160
CENOL170
CENOL180
CENOL190
CENOL200
CENOL210
CENOL220
CENOL230
CENOL2LO
CENOL250
CENOL260
CENOL270
CENOL280O
CENOL290
CENOL300
CENOL310
CENOL320
CENOL330
CENOL3LO
CENOL350
CENOL360
CENOL370
CENOL380
CENOL390
CENOLLOO



F

C

C UPDATE EIGENVECTOR MATRIX

C

c

C UPDATE EIGENVALUES

c

ILE:

110

120
130
140

150
160
170

180
190

210

220

CENDIF

DO 120 I=1,JM]

AJ=A(1,J)
BJ=B(1,J)
AK=A (1,K1)
BK=B (1,K1)

A(1,J) =AJ+CG*AK
B(l,J)=BJ+CG*BK
A(l,K1)=AK+CA*AJ
B(l,K1)=BK+CA*BJ
IF(KP1-N) 140,140,160
DO 150 I=KP1,N

AJ=A(J, 1)
BJ=B (J, |)
AK=A (K1,1)
BK=B (K1, 1)

AJ=A(J, )
BJ=B (J, 1)
AK=A (1,K1)
BK=B (1,K1)

A (J, 1) =AJ+CG*AK
B (J, 1) =BJ+CG*BK
A(l,K1) =AK+CA*AJ
B(1,K1)=BK+CA%*BJ
AK=A (K1,K1)
BK=B (K1,K1)

FORTRAN

‘A(J, 1) =AJ+CG*AK
B (J, |) =BJ+CG*BK
A(K1,1)=AK+CA%AJ
B(K1, 1) =BK+CA*BJ
IF (JP1-KM1) 170,170,190
DO 180 -1=JP1,KMI1

A

OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

A(K1,K1)=AK+2.*CA*A (J,K1) +CA*CA*A (J,J)
B(K1,K1)=BK+2.%CA*B (J,K1)+CA*CA*B (J,J)
A(J,J)=A(J,J)+2.*CG*A (J,K1) +CGXCG*AK
B(J,Jd)=B(J,J)+2.%CG*B (J,K1) +CG*CG*BK

A(J,K1)=0.
B(J,K1)=0.

DO 200 i1=1,N

XJ=X (1,J)

XK=X(1,K1)

X (1,J) =XJ+CG*XK
200 X (1,K1)=XK+CA*XJ

CONTINUE

DO 220

I=1,N

IF(A(t,1).GT.0.AND.B(l,!).GT.0)GO TO 220

WRITE (10UT, 2020)

STOP

EIGV(1)=A{(1,1)/B(1,1)

IF(IFPR.EQ.0)GO TO 230

110 . : s

CENOLL 1O
CENOLL20
CENOLL30
CENOLLLO
CENOLL50
CENOLLGO
CENOLL70
CENOLL80
CENOLL90
CENOL500.
CENO4510
CENOL520
CENOL530
CENOL5LO
CENOL550
CENOL560
CENOL570
CENOL4580
CENO4590
CENOL600
CENOL610
CENOL620
CENOL630
CENOL6LO
CENOL650
CENOL660
CENOL670
CENO4680
CENOL690
CENO4700
CENO4710
CENOL4720
CENO4730
CENOLTLO
CENOL750
CENOL760
CENOL770
CENOL780
CENO4790
CENOLB0O
CENO4810
CENOLB20
CENOLSB30
CENOLSBLO
CENOLB50
CENOLB60
CENOLB70
CENOL88O
CENOLB90
CENOL900
CENOL910

- CENOL920

CENOL930
CENOLYLO
CENOL950



F

c

ILE:

CENDIF FORTRAN A OLD DOMINION UNIVERSITY -~ CMSL k.0 8706

WRITE (10UT, 2030)
WRITE (10UT,2010) (EIGV (1) ,1=1,N)

C CHECK FOR CONVERGENCE

c

C

c

C
c
C

c

o
C
c

230

240

251
252

250

FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES & SCALE EIGENVECTORS

255

260

270

300
310

D0 240 I=1,N
TOL=RTOL*D (1)
DIF=DABS(EIGV (1)-D(I))
IF(DIF.GT.TOL)GO TO 280
CONT INUE

C CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D

PRINT%,' RTOL ',RTOL

EPS=RTOL#*%2

DO 250 J=1,NR

JJ=J+1

DO 250 Ki=JJ,N

I F (DABS (A (J,K1)) .LT.1.D-30)GO0 TO 251

EPSA=(A (J,K1) *A(J,KT))/ (A(J,Jd) *A (K1,K1))

GO TO 252

EPSA=0.0

PRINT%,' EPSA ',EPSA,' EPS ',EPS
EPSB=(B(J,K1)*B (J,K1))/(B(J,J)*B(K1,K1))

PRINTX,' EPSB ',EPSB,' EPS ',EPS
IF((EPSA.LT.EPS) .AND. (EPSB.LT.EPS))GO TO 250

GO To 280 '
CONTINUE

DO 260 1=1,N
DO 260 J=1,N
A(J,1)=A(1,J)
B(J,1)=B(1,J)
D0 270 J=1,N
BB=DSQRT (B (J,J))
DO 270 K1=1,N

X(K1,J)=x(K1,J) /BB

WRITE (10UT, 310)

DO 300 I=1,N

WRITE (10UT,2010) (X(1,J),J=1,N)
FORMAT (/1X,' THE EIGENVECTORS ARE ')

RETURN

UPDATE THE 'D' MATRIX AND START NEW SWEEP I|F ALLOWED

280
290

2000

DO 290 I=1,N

D(1)=EIGV (1)

I F (NSWEEP.LT.NSMAX) GO TO L0

GO TO 255 :
FORMAT (/1X,' SWEEP NUMBER IN JACOBI = ',I4)

111

CENOL960
CENOLS70
CENOL980
CENOL990
CENO5000
CENO5010
CENO5020
CENO5030
CENO50L0
CENO5050
CENO5060
CENO5070
CENO5080
CEN05090
CENO5100
CENO5110
CENO5120
CENO5130
CENO5140
CENO5150
CENO5160
CENO5170
CENO5180
CENO5190
CEN05200
CENO5210
CEN05220
CENO5230
CENO5240
CENO5250
CENO5260
CENO5270
CENO5280
CEN05290
CENO5300
CENO5310
CENO5320
CENO5330
CENO5340
CENO5350
CENO5360
CENO5370
CENO5380
CENO5390
CENO5L00
CENO5L10
CENO5420
CENO5L430
CENOSLLO
CENO5L50
CENO5L60
CENO5L70
CENO5L480
CENO5430
CENO5500



FILE: CENDIF FORTRAN A  OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

2010 FORMAT (/1X,6E20.12) CENO5510
2020 FORMAT (/1X,' #%k% ERROR SOLUTION STOP / MATRICES NOT POSITIVE CENO5520
EDEFINITE') CENO5530
2030 FORMAT (/1X,' CURRENT EIGENVALUES IN JACOBI ARE ') CENO55L40O
END : CENO5550
CENO5560

SUBROUTINE DAMP (N,EIGV, X,M,DAMRAT,C) CENO5570
IMPLICIT REAL*8 (A-H,0-2) CENO5580
DOUBLE PRECISION X (70,70),T(70,70), M(70 70) ,C(70,70) ,EIGV (70) ,DAMRCENO5590

&AT (70) CENO5600
CENO5610

D0 10 t=1,N CENO5620

EIGV (1)=DSQRT(EIGV (1)) CENO5630

D0 10 J=1,N CENO56L0

0 ¢(1,J)=0.0 CENO5650
CENO5660

DO 20 11=1,N CENO5670
DA=2.*DAMRAT (I 1) *EIGV (1 1) CENO5680

B0 20 1=1,N " CENO5690

00 20 J=1,N CENO5700

20 c(1,d)=C(1,d)+X(1,11)%X(J, 1) *DA CENO5710
CENO5720

DO 30 I=1,N CENO5730

D0 30 J=1,N CENO5740
T(1,J)=0.0 CENO5750

Bo 30 K1=1,N CENO5760

30 T(1,d)=T,3)+M(1,K1) *C (K1,J) CENO5770
CENO5780

DO LO I=1,N CENO5790

DO. 4O J=1,N CENO5800
c(+,J)=0.0 CENO5810

DO 4O Ki= CENO5820

4o C(1,d)=C(1,d)+T{I,K1)*M(K1,J) CENO05830
. _ CENO5840
o Do 50 I=1,N " CENO5850
€50 WRITE (2,120) (C(1,Jd),J4=1,N) CENO5860
120  FORMAT (6D14.4) CENO5870
RETURN CENO5880
CENO5890

END CENO5900
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ILE: DAVE

ouT

A OLD DOMINION UNIVERSITY -- CMSL 4.0 8706

THIS 1S CENTRAL DIFFERENCE SOLUTION

STIFFNESS -- 0.531100006D+02
DAMPING ---- 0.130999982D-01
FORCE ------ 0.400000066D-02
FREQUENCY -- 0.2513000490+02
TIME DEFLECTION AT L/2
.00500000 0.075607L42 1
.01000000 0.07L11487 1
.01500000 0.07822479 1
.02000000 0.07755833 1
.02500000 0.07321689 1
.03000000 0.07439081 1
.03500001 0.07596175 1
.04000001 ©0.07030083 1
.04500001 0.06480695 1
.05000001 0.06403831 1
.05500001 0.05838368 1
.06000001- 0.0L4628549 1
.06500001 0.03770042 1
.07000001 0.030L44851 1
.07500001 0.01549482 1
.08000001 -0.00155219 1
.08500001 -0.01381828 1
.09000001 -0.02866951 1
.09500002 -0.04917751 1
.10000002 -0.06667677 1
.10500002 -0.08058453 1
.11000002 -0.09807491 1
.11500002 -0.11601054 1
.12000002 -0.12788046 1
.12500002 -0.13797468 1
.13000002 -0.14964225 1
.13500002 -0.15657816 1
. 14000002 -0.15730855 1
. 14500002 -0.15770900 |
.15000002 -0.15621028 1
.15500003 -0.14753221 1
.16000003 -0.13531903 1
.16500003 -0.12327482 1
.17000003 -0.10672159 1
.17500003 -0.08L461688 1
.18000003 -0.06275240 1
.18500003 -0.04085973 1
. 19000003 -0.01462197 1
.19500003 0.01269540 1
.20000003 0.036736L48 1
.20500003 0.060857L43 1
.21000003 0.08652612 1
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