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EXPERIMENTAL AND THEORETICAL INVESTIGATION OF PASSIVE
DAMPING CONCEPTS FOR MEMBER FORCED AND FREE VIBRATIONS

By

Zia Razzaq1 and David W. Mykins2

ABSTRACT

The results presented in this research report are the outcome of an

ongoing study directed toward the identification of potential passive damp-

ing concepts for use in space structures. The effectiveness of copper

brush, wool swab, and "silly putty" in chamber dampers is investigated

through natural vibration tests on a tubular aluminum member. The member

ends have zero translation and possess partial rotational restraints. The

silly putty in chamber dampers provide the maximum passive damping efficien-

cy. Forced vibration tests are then conducted with one, two, and three

silly putty in chamber dampers. Owing to the limitation of the vibrator

used_, the performance of these dampers could not be evaluated experimentally

until the forcing function was disengaged. Nevertheless, their performance

is evaluated through a forced dynamic finite element analysis conducted as a

part of this investigation. The theoretical results are based on experi-

mentally obtained damping ratios indicate that the passive dampers are

considerably more effective under member natural vibration than during

forced vibration. Also, the maximum damping under forced vibration occurs

at or near resonance.

* Professor, Department of Civil Engineering, Old Dominion University,
Norfolk, Virginia 23529.

2Graduate Research Assistant, Department of Civil Engineering, Old Dominion
University, Norfolk, Virginia 23529.
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NOMENCLATURE

[C] = damping matrix for member

[D] = displacement vector
*

[D] = velocity vector
• •
[D] = acceleration vector

[Dj] = displacement vector at node j

E = Young's Modulus

I = moment of inertia

[K] -= global stiffness matrix for member

[R] — forcing function vector

yg = arbitrary constants for Newmark's method

A*d = dynamic deflection amplitude

AF = static midspan deflection

Ag = static midspan deflection

At = time increment

$ =• modal vector

n = damping efficiency index

£2 = frequency of applied forcing function

to = natural frequency

tOfe = natural frequency from finite element analysis

0 = mass density

£ = damping ratio
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1. INTRODUCTION

1.1 Background and Previous Work

The space station designs currently under consideration by NASA are

three-dimensional space structures composed of long tubular members.

Modules providing the required living and working space for astronauts will

be attached to this framework. Such a structure, suspended in a weightless

environment, would be subjected to many types of dynamic loading. These

include differential heating or cooling of the structure, variations in

acceleration or gravitational pull, and impact with a solid object. The

ability to expeditiously damp these vibrations before they cause permanent

damage is a practical problem worth studying.

The necessarily large slenderness ratio of the average space truss

member, combined with the flexible, semi-rigid end restraints cause the

dynamic response of these members to be characterized by low frequency,

small amplitude vibrations. Active damping techniques utilize electronic

sensors and movable masses to reduce vibration of structures. This system,

although effective, requires regular maintenance and an external power

source. An alternative for mechanically damping a system is the concept of

"passive" damping. This method uses a device or material permanently

attached to the structure or its components and designed to absorb the

energy of vibration thereby providing some damping of the system. Unlike

"active" damping, this would require minimal maintenance and no external

power.

The challenge to developing a passive damping concept, particularly for

a space structure is two-fold. First is the necessity to minimize the mass,

for without this constraint one obvious solution would be to provide large
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mass concentrations at the critical nodal points for the vibration modes.

Such an approach would be expensive since the cost of transporting the

system into space is directly related to the mass. The second challenge is

to identify a concept which will provide passive damping without altering

the strength or stiffness of the structure. For example, mild compression

of the members provides some damping, however, the safe service loads for

the structure are altered.

Recently, investigations into passive damping concepts for slender

tubular members have been conducted with various end conditions (References

1-5). The most effective concepts found were the mass-string-whiskers

assembly, and brushes for electrostatic and frictional damping. In these

experiments, only natural flexural vibration was examined.

The previous work was conducted on hollow tubular steel members with an

outer diameter of 0.5 inches. The passive damping concepts which were found

to be effective for these members may not be as effective if the dimensions

are changed. Factors altered by dimensionsal changes may include the damper

mass required, the extent of the frictional interaction, and the member

dynamic characteristics. Clearly research is needed to identify a viable

passive damping concepts for members of different sizes and dymanic

properties. In the present study, hollow tubular aluminum members with an

outside diameter of 2.0 inches are used. These members more closely

resemble the actual size and material which may be used in the future space

stations.

1.2 Problem Definition

Figure 1 shows schematically a slender beam of length L with a hollow

circular cross section. The outer diameter is D0 the inner diameter is D1,

- 2 -



and the material is aluminum with a Young's modulus of 10,000 ksi. An

aluminum member is used because the graphite composite tubes which may

possibly be used in space structures are not yet available. The member ends

are provided with a prototype connection developed by NASA for the space

frames. These connections possess partial rotational restraint

characteristics in the plane of motion and a more rigid end condition in the

orthoganal plane. No axial or lateral movement of the member ends is

permitted.

The problem is to identify potential passive damping concepts to absorb

the energy of both natural flexural vibration, and harmonic forced flexural

vibration, and to study the effectiveness of each concept. The natural

vibration is caused by the sudden release of a constant static load. The

harmonic forcing function is applied through a mechanical connection to a

harmonic vibrator.

1.3 Objective and Scope

The following are the main objectives of this study:

1. Identification of potential passive damping concepts for slender

tubular structural members. Specifically, the following damping

concepts are investigated:

a. wool swabs,

b. copper brushes,

c. silly putty in chambers.

2. Evaluation of the damping efficiencies of the various damping

concepts.

3. Evaluation of the suitability of a theoretical finite element

analysis by comparison to experimental results for natural and

- 3 -



forced vibration, and a previous finite-difference solution for

natural vibration.

Only flexural member vibration is considered. The natural vibration

study is conducted on each of the three passive damping concepts and for one

specific initial deflection. Only the most efficient damping concept is

considered for further study under forced vibration. Also, the vibration is

induced by load application at the member midspan.

1.4 Assumptions and Conditions

The following assumptions and conditions have been adopted in this

study:

1. The deflections are small.

2. The material of the member is linearly elastic.

3. Only planar vibration is considered.

4. Damping force is opposite but proportional to the velocity at any

location along the member.

5. The damping force is uniform along the length of the member.

6. The member is tested at 1-g and room temperature.

7. The effect of secondary induced forces such as varying axial

tension and compression developed in the member during vibration

is considered to be negligible.
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2. THEORETICAL FORMULATION

2.1 Finite Element Formulation

The beam shown in Figure 1 may be divided into N finite elements along

the length. For the discretized system, the governing equation of motion

can be expressed in the following matrix form (Reference 6) :

- {R} (1)

where :

{D} = displacement vector,

{D} - velocity vector,

{D} - acceleration vector,

[K] - global stiffness matrix for the "structure",

[M] - global modified lumped mass matrix,

[C] - damping matrix,

{R} = forcing function vector.

The boundary and initial conditions for the problem shown in Figure 1

are given in Reference 2 and are summarized here:

D(0,t) - 0 (2)

D(L,t) - 0 (3)

El D"(0,t) - 1̂  D'(O.t) (4)

El D"(L,t) - -k2 D'(L.t) (5)

D(x,0) - 0 (6)

D(x,0) - 0(x; K, El, L) (7)
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where primes represent differentiation relative to x, and dots represent

time differentiation. The displacement vector at any node j along the

member can be written as:

dJ
(8)

where d, and d', represent, respectively, the deflection and slope of j.

Equations 2 to 5 represent the boundary conditions whereas Equations 6

and 7 are the initial conditions. Equation 7 simply states that at time

zero, the member deflected shape is dependent on x, K, El and L.

The first task toward the solution of the matrix equation is the

assembly of the three coefficient matrices. The [K] matrix is assembled

from the individual element matrices combined in such a way so as to enforce

the given boundary and inter-element compatability conditions. To

illustrate the procedure, an example of a beam with four elements as shown

in Figure 2 is given in Appendix A.

The global mass matrix is a diagonal form of a lumped mass matrix which

was developed (Reference 6) for use with elements where translational

degrees of freedom are mutually parallel, such as beam or plate elements.
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This matrix may be written as:

[M] =

m
2

mL2

78
m

ml/
39

m
2

mL2

78~

(9)

where:

m - mass at each degree of freedom - pL(A)

p = mass density (mass/in3)

L - length of element (in)

A = cross sectional area of element (in2)

In order to calculate the damping matrix [C], it is necessary to first

determine the modal shape and natural frequencies of the system. This is

accomplished numerically by solving the following eigen value problem using

the Jacobi method (Reference 7):

UK] -co2 [M][(*>] - (0) ' (10)

where:

co - natural frequency,

{$ } - modal vector.

Onceco and {$} are known, determination of the damping matrix proceeds as
/

described in Reference 7.
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Once all three coefficient matrices have been assembled, the solution

of Equation 1 may proceed using any one of several solution algorithms

available.

2.2 Newmark's Method

Newmark's method for solving the dynamic equilibrium equation is

sometimes called the trapezoidal method because it is based on a linear

interpolation to find succeeding points. This is done by assuming:

{D}t+At - {D)t +At{D)t +At
2( (--3) {D}t + g{D}t+At ) (11)

v2
and

ttAt - {D)t + At((l-YOlD)t

where At is a time increment, and 6 and Y are arbitrary constants. By

substituting Equations 11 and 12 into Equation 1 written at time t =• t + At,

one gets (Reference 6) :

[C] / -Jt-{D}t +•*•-! (D)t + (At) -J- - 1 {D}t + (13)
I 3At B 23

AT (D)t + ~(D>t +/̂ ~ - i\t'D>t'
BAt \2S / 2

For a known loading function we may solve Equation 13 for the deflection at

time t - t + At using the deflection, velocity and acceleration at time t.

- 8 -



The algorithm for Newmark's solution is as follows:

1. Compute the coefficient matrices from geometric and material

properties.

2. At t = 0, set initial conditions by prescribing {D)t_0 and

3. Use Equation 1 to solve for (D}t=0.

4. Solve Equation 13 for {D)t+At.

5. Solve Equation 11 for {D)t+At.

6. Solve Equation 12 for {D}t+At-

7. Set'{D}t = {D)t+At; {D)t - (D}t+At; {D}t -

8. If t < total time desired, go to Step 4.

9. Stop.

This method of solution is unconditionally stable if Y>0.5 and

3 > (2Y + 1)2/16- With Y- 0.5 and 3 - 0.25, there are no amplitude errors

in any sine wave motion regardless of its frequency, although the periods

are overestimated. The mode shapes of the member in this study, however,

are not known exactly. Nevertheless, Y and 3 values of 0.5 and 0.25

respectively, were tentatively chosen. The suitability of these values is

evaluated later in Section 4.

The initial static deflection vector required in Step 2 of the

algorithm may be determined using any one of the several classical

structural analysis techniques. An approximate shape function for the

member due to a specified midpoint displacement AQ at time t - 0 is taken in

the following form (Reference 2):

TTX, kL
sin + — |1 - cos

L 47TEI
(14)
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where:

Ai -
kL

(15)

1 +
2TTEI

The initial slope of the member at any point is found by differentiating

Equation 14 resulting in:

d'., = A, — COS

TTXj k 2TTXj

+ sin —— (16)
L L 2EI L

where x, is the position of node j along the member length.

2.3 Central Difference Formulation

The governing equations and formulation of the coefficient matrices to

be used in the central difference method of solution are precisely the same

as those previously given for Newmark's method. Once these geometric and ,

physical properties are determined, one proceeds by writing the central

difference expressions for both velocity and acceleration at an arbitrary

time t:

lfi>t -- |(D)
2(At) L

- (D}t.At (17)

< D>t (18)

2(At)

1

(At)2

Equations 17 and 18 may then be substituted into Equation 1 to yield, after

some rearrangement:

[C] \ / 2[Mp
1 (DKA.. - (RK - I[K]

(At2)

[M] [C] ̂

2(At)

/ [M]

1
\(At)2 2 (At)

(19)
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The initial conditions {D)Q and (D}0 are prescribed and {D}0 is found by

solving Equation 1. Once these are known Equations 17 and 18 may be solved

simultaneously to yield the displacements (D).̂  required to start the computations.

(At)2 ..
{D}.t - {D}0 - At{D}0 + - {D}0 (20)

2

The solution algorithm for central difference is as follows :

1. Compute the coefficient matrices from geometric and material

properties.

2. Set At — time step increment.

3. Set initial conditions by prescribing {D)t.0 and {D)t=0.

4. Solve Equation 1 for {D)t=0.

5. Solve Equation 20 for {D)_At.

6. Solve Equation 19 for {D)t+At.

7. Set (D)t.At = {D)t> and {D)t = {D)t+At.

8. If t < total time desired, go to 6.

9. Stop.

The central difference method is a conditionally stable, explicit

method of solution. Conditionally stable implies that if A t is not chosen

small enough, the predicted response of the system will grow unbounded. A

preliminary numerical study showed that At must be in the range from 0.001

to 0.005, therefore, a &t - 0.001 sec. is used in this study.

- 11 -



3. EXPERIMENTAL STUDY

3.1 Specimen and Connection Details

3.1.1 Specimen

The experimental study consisted of conducting natural and forced

vibration tests on a tubular aluminum member. The tests were performed both

with and without passive damping devices present inside the member. The

tubular member used was 14"-9" long with an outside diameter of 2" and a

wall thickness of 0.125", yielding an inside diameter of 1.75". A schematic

of the member tested is shown in Figure 1. Note that the member was

horizontal for all testing, with gravitational forces acting in the plane of

motion.

3.1.2 Connection Details

The prototype end connection used in this study is shown in Figure 3.

It is constructed of an aluminum alloy, weights 0.595 Ibs. excluding

fastener bolts, and has a volume of 3.988 in3. The connection has a total

of nine clevis blades, six of which are in the horizontal plane. One of the

blades is in the vertical plane (at C) and two are at 45 degrees to the

horizontal plane. These two are located at 45 degrees relative to the

vertical clevis and in the planes containing the two lower clevis blades

shown in Figure 3(a).

The fastner locations for the clevis blades in the horizontal plane are

numbered 1 through 12. The member was fastened at locations 3 and 4 shown

in Figure 3(a). Fasteners at locations 5 through 11 are used to mount the

connection to a fixed base plate. No fastener was installed at location 12

due to an interference problem with the support underneath the base plate.

This did not make any difference since the other fasteners provided
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sufficient fixity. Each fastener has a diameter of 0.25 in. and a length of

0.94 in. Washers were used at locations 1 and 2 only.

The ends of the tubular member were threaded to allow one-half of the

"snap-lock" connection to be screwed onto it. Small holes were drilled

through this threaded connection and pins inserted to prevent rotation and

loosening of the connection during testing. The other end of the snap-lock

connection had its blade end fit snugly into one of the clevis blades of the

prototype end connection and fastened by two bolts. The spring stiffness,

k, shown in Figure 1 was determined by a statical analysis using an

experimentally determined midspan deflection for a known concentrated load.

This value was 53.1 k-in/rad. The assembled connection is shown in Figure

4.

3.2 Passive Damping Concepts

Three different types of passive dampers referred to in Section 1.4 are

described in this section.

3.2.1 Copper Brush Dampers

Figure 5 shows a copper brush damper 0.8125 inches in diameter, of

total length 3.125 inches and a weight of 13.0 grams. The brush is

manufactured by Omack Industries, Onalaska, Wisconsin 54650 with a US

Patent 41986 and an inventory control number 07668341989. It has a threaded

aluminum piece 1.0 inch long at one end with a twisted wire 2.125 inches in

length attached to it. The copper bristles are attached to the entire

length of the twisted wire. This type of brush is commonly used in cleaning

the bore of a 12 gauge shotgun.

Figures 6 and 7 show schematically the attachments for the passive

dampers and their spacing inside the tubular member. As shown in Figure 6,
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the assembly consists of several parts. First, a helical spring with a

stiffness of 0.44 Ib/in. is attached to the inside of the connection through

a hook on the snap-lock connector as shown in Figure 8. A nylon line is

tied to the other end of the spring and also connected to the first copper

brush damper. The nylon line (sportfisher monofilament line manufactured by

K-Mart Corporation, Troy, Michigan 48084, 8013.9, No. EPM-40, inventory

control number 04528201391) used in this investigation has a 40 Ib.

capacity. A series of nylon line and dampers are attached along the member

length until the other end of the tubular member is reached. The end of the

nylon line is passed through a hole in the snap-lock connector and stretched

by an amount of 2.0 inches in the longitudinal direction to induce nominal

tension in helical spring. It is then secured to the vertical clevis at the

support. The stretched helical spring is shown in Figure 9. The resulting

passive damping assembly is aligned with the longitudinal axis of the

tubular member due to the small amount of axial tension. No axial

compression of the member is induced by the passive damping assembly on the

tubular member since both ends of the nylon line are connected to the rigid

supports. Since the nylon line is flexible, a significant portion of the

stretching is due to elongation of the line itself with the remainder of the

stretching taking place in the spring. The dampers are installed

equidistantly between the ends of the member.

As a part of the present study, the effect of both number of brushes

and presence or absence of tension on the nylon line, on member damping was

examined.

In addition to baseline experiments on the specimen with no damping

devices, a total of ten different conditions were examined. Tests with 1,
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2, 3, 5, and 7 brushes were conducted both with and without tension in the

line.

3.2.2 Wool Swab Dampers

Figure 10 shows a wool swab damper with a 1.0 inch diameter, a total

length of 3 inches and a weight of 7.1 grams. The wool swab is manufactured

by Omark Industries, Onalaska, Wisconsin 54650 with a US patent 415838 and

an inventory control number 076683422187. It has a threaded piece at one

end with a twisted wire attached to it to which the wool swab is attached.

The aluminum piece is 0.75 inches long while the wool swab has a length of

2.125 inches. This type of brush is commonly used for cleaning 12 gauge

shotguns. The dampers are mounted inside the tubular member as shown in

Figures 6 and 7. Tests were carried out using 1, 2, 3, 5, and 7

equidistantly spaced wool swab dampers.

3.2.3 Silly Putty in Chamber Dampers

The final device examined was the "silly putty" in chamber damper shown

in Figure 11. It consists of a sphere approximately 0.75 inches in diameter

made from silly putty placed inside a hollow cylindrical chamber. Silly

putty is a trade name for an elasto-plastic material commonly used as a

children's toy. It is manufactured by Binney and Smith, Inc., Easton, PA

18042, with an inventory control number of 07166208006. The chamber is made

from a 1.0 in. long piece of a "Bristole Pipe" (PVC-1120, Schedule 40, ASTM-

D-1785, nominal 1 inch pipe) having an original outer diameter of 1.058 in.

and a wall thickness of 0.15 in. Since the damping effect was assumed to be

provided by the silly putty, two steps were taken to reduce the mass of the

damper thereby improving its efficiency. First, the inside diameter is

increased by machining it to 0.914 in. resulting in a wall thickness of 0.07
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in. Its weight is further reduced by drilling a total of seven 0.25 in.

diameter holes around its periphery half-way from its ends. The silly putty

is held inside the chamber by means of a plastic wrap ("Saran Wrap")

stretched over the ends of the chamber and held in place with tape. The

silly putty is then free to bounce around inside the chamber. The total

weight of the damper including the silly putty, PCV chamber, and plastic

wrap is 7.4 gms. The dampers are mounted inside the tubular member as shown

in Figures 6 and 7. Tests were conducted with a nominal tension in the

spring and with no tension in the spring using 1, 2, 3, 5 and 7 equidistant

silly putty in chamber dampers. An additional test was performed with 11

equidistant dampers and a nominal tension in the spring.

3.3 Test Setup and Procedures

The instrumentation used in the tests consisted of a proximity probe,

harmonic vibration devices and a deflection-time plotter. This section

summarizes the test setup and procedures followed for all the experiments

included in this report.

Figure 12 shows a schematic of the member natural vibration test setup.

A weight, W - 7.9 Ib. was suspended at the member midspan by means of a

cord, causing a total midspan deflection of 5/32 in. To induce natural

vibration, the cord was cut with a pair of scissors, thereby releasing the

member. The time dependent deflection at member midspan is recorded by

means of a proximity probe shown in Figure 13, and connected to a

deflection-time plotter.

Figure 14 shows the member forced vibration setup, a schematic of which

is shown in Figure 15. Forced vibration of the specimen was obtained using

a vibrator (Model 203-25-DC) with an oscillator (Model TPO-25). The
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vibrator applies a forcing function of the type:

F(t) = F0 cos (fit)

in which F0 - 4 Ib., t - time, and Q - frequency of the forcing function.

The applied frequency may be controlled using the oscillator.

The forcing function F(t) is transmitted from the vibrator to the

tubular member through a fabricated vibrator connector as indicated in

Figure 14. The details of this mechanical connector are shown in Figure 16.

It consists of three main segments PQ, QR and RU interconnected at Q and R

by means of pins. End P is connected to the vibrator. The end U is

connected to the lower part of a metal hose clamp provided around the

tubular member at midspan as indicated in Figure 14. The parts QR and RU

can be disengaged at R by pulling out the pin RS instantaneously in the RS

direction as indicated by the arrow at S. A string attached at S is used to

pull out the pin. Once the pin is pulled, the arm QR drops freely and the

beam is free to vibrate without constraints. Both joints Q and R are well

lubricated to reduce friction. The vibrator connector in the engaged and

the disengaged positions is shown in Figures 17(a) and 17(b), respectively.

A record is made of the deflection-time response of the member once the

forcing function, F(t), is removed.

3.4 Test Results and Discussion

In this section, the results from the member natural and forced

vibration tests are presented and discussed.

3.4.1 Natural Vibration

All passive damping concepts were tested with natural flexural member

vibration caused by releasing a weight at midspan as explained in Section

3.3. The initial midspan deflection, A0. due to the suspended weight is
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0.1563 in. A summary of the test results for the tubular member with no

dampers as well as with wool swab, copper brush, and silly putty in chamber

dampers is given in Table 1. The number of dampers, the total weight of the

damping assembly, the damping ratio and the damping efficiency index are

listed for each passive damping assembly. The logarithmic decrement method,

as described in Reference 8, was used with the experimentally obtained

deflection versus time.plots to obtain the damping ratio.

The calculation of the damping ratio for the natural vibration tests

was obtained using the first sixteen cycles and reading the amplitudes

directly from the experimental deflection versus time plots. Each L, value in

Table 1 was then obtained by taking the average results of three tests for

each combination of damping devices.

The efficiency index is defined (Reference 1 and 2):

? - Son (22)
Md

in which £ is the damping ratio with the damping devices, £0 *
s the damping

ratio in the absence of any passive damping device, and Md is the total mass

of the damping assembly.

The natural frequency from all of the experiments was found to be 8.4

Hz. The deflection versus time plots referenced in this section are

obtained using the average £ value and natural frequency from the

experiments, and the following A-t relationship (Reference 1).

A = A0e-^
Wt( JS sinujdt + cos Wdt ) (23)

\Wd /
The damped circular frequency,U)d, is given by:

ud =w/l - £
2 (24)

The details including the listing of a computer program utilizing Equation
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23 to produce a deflection versus time plot are given in Reference 1. A

baseline plot of deflection versus time for the member with no dampers is

shown in Figure 18.

3.4.1.1 Copper Brush Dampers

For the copper brush dampers the maximum g - 0.0131 is obtained with an

assembly of three damping devices. This assembly produces the maximum n ~

16.72 in/lb-sec2. Figure 19 shows the corresponding average A-t plot for a

10 second duration. Figure 20 shows the effect of the three copper brushes

on the deflection time envelopes. The vertical ordinate in this figure is

designated by Ae to indicate that the figure represents the envelopes rather

than the complete A-t relationship. The damping ratios from the experiments

are given in Table 2(a). In addition to the test conducted as described in

Section 3.3, a series of tests were made with no tension in the damping

assembly. These tests, conducted with 1, 2, 3, 5 and 7 devices in the

specimen showed no significant increase in member damping regardless of the

number of devices used. The results are summarized in Table 2(b). One

plausible explanation for this is as follows. The outer diameter of the

copper brush is less than the inside diameter of the member. When there is

no tension in the damping assembly, the devices are free to bounce inside

the specimen. Because the vibrations are relatively small and the natural

frequency low, the assembly with no tension has a tendency to move with the

specimen, bouncing slightly inside the member. Due to the relatively

negligible mass of the damper as compared to the member this nearly

coincident movement produces minimal damping of the vibration. With a

slight tension in the assembly, it can have its own natural frequency,

different from the specimen. As a result, when vibration of the specimen is
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induced, the impact of the damping assembly with the side of the tube sets

the assembly in motion. Two types of motion then contribute to the damping.

First, because of the difference in natural frequency of vibration impact of

the dampers against the inside of the tubular member acts to damp the

vibration. Secondly, the frictional interaction between the dampers and the

member inside surface takes place while the dampers vibrate both in plane

but out of phase, and axially. When the number of dampers is increased

beyond three with nominal tension, the damping ratio decreases.

3.4.1.2 Wool Swab Dampers

For the wool swab dampers the maximum £ = 0.0105 was obtained with an

assembly of three dampers resulting in an efficiency of 9.05 in/lb-sec2.

The maximum n ™ 12.34 was obtained with a single damper assembly yielding a

damping ratio of 0.0099. Figures 21 and 22 represent the A-t plots for the

member with three, and one wool swab damper assemblies, respectively for a

10 second duration. Figures 23 and 24 show the effects of these damping

assemblies on the deflection-time envelopes. The damping ratio increased as

the number of dampers was increased from one to three. Increasing the

number of devices beyond three resulted in a decrease in both damping ratio

and efficiency. The small negative efficiency noted for seven devices can

be taken as practically zero. It was found that a variation in the method

of attachment of the assembly to test specimen from concentric to an

eccentric connection had no significant effect on the resulting damping

ratio. The results are given in Tables 3(a) and 3(b).

3.4.1.3 Silly Putty in Chambers Dampers

For silly putty in chambers dampers, the maximum 5 - 0.0115 was

obtained with an assembly of three dampers resulting in a r\ - 15.73 in/lb-

- 20 -



sec2, whereas the maximum n «= 21.35 in/lb-sec2 was obtained with an assembly

of two dampers corresponding to £ = 0.0113. Figures 25 and 26 represent the

A-t plots for the member with three and two silly putty in chamber damper

assemblies, respectively, for 10 second duration. Figures 27 and 28 show

the effects of these damping assemblies on the deflection-time envelopes.

The damping ratio was found to increase as the number of dampers was

increased from one to three. Increasing the number of dampers beyond three

resulted in a decrease of both damping ratio and efficiency. The tests

conducted with no tension in the assembly showed a slight increase in

damping ratio up to the three damper assembly. An increase in the number of

dampers beyond three with no tension on the assembly showed no increase in

damping ratio above the baseline damping ratio for the empty member. The

results are given in Tables 4(a) and 4(b). Of all the passive damping

devices tested in this study, the assembly of three silly putty in chamber

dampers was found to be the most efficient. Therefore, these dampers were

chosen for further study under forced harmonic vibration.

3.5 Forced Then Free Vibration

It was discovered during testing that the vibration employed for the

forced vibration tests allowed only a limited amount of travel. This meant

that the deflection of the member at the location where the vibrator was

attached was limited to what the vibrator would allow. Nevertheless, forced

vibration tests were conducted on the individual member since it was not

known initially whether or not the dynamic deflection would exceed the

vibrator capacity. The results presented later in this section indicated

that the vibrator constrained the member deflection for a certain range of

forcing function frequencies including that which would otherwise have
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constituted a resonance condition. This limitation must be taken into

account when evaluating the performance of the dampers on an individual

member.

3.5.1.1 Silly Putty in Chamber Dampers

The results of the experimental study of the member under forced then

free vibration are summarized in Table 5. Tests were conducted with no

dampers, and 1, 2, and 3 dampers inside the member. Each of these

assemblies was subjected to a force of 4 Ib. at the member midspan, at

frequencies of 2, 5, 7, and 9 Hz, corresponding to ft/o^ ratios of 0.238,

0.596, 0.834, and 1.073, respectively. An additional test was conducted on

the empty member and the 3 damper assembly using a frequency of 12 Hz (ft/%

- 1.430). The experimental results are shown in Figures 29 through 32. The

free vibration part of the deflection-time graph is obtained by disengaging

the forcing function from the member midspan as described in Section 3.3.

The constrained dynamic deflection amplitude, A*D , and its dimensionless

value, A*D/AS> where AS *-s c^e calculated static midspan deflection due to a

4 Ib. load, are listed in Table 5. The constrained dynamic deflection

amplitude is the measured amplitude of the initial constrained force part of

the deflection-time plots. Also listed in Table 5 are the maximum initial

free vibration amplitudes, AF, for each assembly and frequency considered.

Two dimensionless quantities are derived from this value asAF/As and AF/A*D.

The data in Table 5 shows that the A*c/As values range from 0.59 to

0.95. For all the cases, the maximum value was observed for an applied

force frequency of 5 Hz. It was also found that theAF/As
 an(*

AF/A*D ratios were gradually increasing for increasing forcing function

frequencies. One important consequence of the deflection constraint imposed
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by the vibrator is that no resonance phenomenon could be produced in the

vicinity of 8.4 Hz. The average damping ratios were obtained from the free

vibration part of the deflection-time curves and are listed in Table 5. As

seen from this data, the single silly putty in chamber damper configuration

provides the maximum decrease in free vibration amplitude. Another

important observation to be made is that the £ values in Table 5 are

significantly less than the corresponding values for the same damping

assemblies given in Table 1. This is attributable to the dependence of the

damping ratio on the initial velocity which is considerably greater for the

results reported in Table 5 than for those in Table 1.

3.5 Comparison of Damping Efficiencies

In Section 3.4, the efficiency index based on Equation 22 was computed

for each damping device. The average values ofn and the associated damping

assembly weight for natural vibration were presented in Table 1. Figure 33

shows the curves between n and the weight of dampers used in the natural

vibration tests for various damping concepts. The silly putty in chamber

dampers provided the most efficienct damping of the member. It is worth

noting that all. of the curves have ascending and descending portions which

define the maximum attainable damping efficiency. In general, an increase

in damping assembly weight beyond 50 grams results in a decline in

efficiency.

Figure 34 shows the relationships between the damping efficiency and

the number of damping devices for natural vibration using all three

concepts. These curves also show that, in general, an assembly of more than

three damping devices results in a decline in efficiency. This may indicate

that the first and second mode shapes are dominating the dynamic response.
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By applying the dampers to locations in the vicinity of maximum deflection

for these mode shapes, the maximum efficiency was realized. Any increase in

the number of dampers beyond three adds mass to the system, and is

associated with a decrease in damping.

The average damping efficiency indices for the forced then free

vibration tests for 1, 2, and 3 silly putty in chamber dampers are given in

Table 5. The maximum efficiency was obtained using one silly putty in

chamber damper and a forcing function frequency of 5 Hz. No correlation

between the maximum efficiency and the initial vibration amplitude was

observed. However, the maximum average damping ratio for each device was

found to occur near the theoretical resonance of the member (between 7 and 9

Hz) in spite of the inability of the apparatus to allow the resonance to

occur.
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4. NUMERICAL STUDY

4.1 Natural Vibration

4.1.1 Finite Element versus Experiment

The formulation and solution algorithmn using Newmark's method for

computing the dynamic response of a beam was given in Section 2. In this

section, a comparison is made of the deflection versus time relations from

this finite element analysis to those obtained experimentally.

A preliminary study showed that for At - 0.0001 sec. ,• the central

difference formulation described in Section 2.3 gave precisely the same

results as Newmark's method. Since Newmark's method provides accurate

results even with larger time steps, it was used to produce Figure 35

through 43. Figure 35 shows a comparison of the finite element and

experimental A-t plots for the member with no dampers. The solid line is

the finite element solution and the dashed line is the experimental curve

using a frequency of 8.4 Hz and the average damping ratios from Table 1.

Figure 36 shows a comparison of the finite element and experimental A-t

plots for the member with 3 copper brush dampers. In both of these curves,

it can be seen that the period of the vibration obtained using finite

elements is exagerated by approximately 32%. However, the amplitudes of the

vibration are accurate to within 5%.

4.1.2 Finite Element versus Finite-Difference

The A-t curves representing the finite-difference solution are obtained

using the computer program developed in Reference 2. Figures 37 and 38 show

the comparison of the finite element and the finite-difference solutions for

the member with no dampers and three copper brush dampers, respectively.

The data for these plots is obtained from Table 1. As indicated in these
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figures, the difference in the period calculated by these two methods is

approximately 26%. However, the amplitudes of the vibration from the two

analyses are within 3% of each other. Figure 39 is a comparison of the

finite-element and finite difference solutions for a simply supported beam

(kt = k2 - 0). Similar correlation is also observed for a fixed end beam

(kĵ  =• k2 = oo ). In the presence of end connections of intermediate fixity,

the two analyses provide somewhat differing results.

4.2 Forced then Free Vibration

In this section, curves obtained from the finite element solution for

various forcing function frequencies are given. Also, a comparison of the

theoretical solution to experimental results is made for both the member

with no dampers and the member with one silly putty in chamber damper at a

forcing function frequency of 2 Hz.

Figure 40 shows the response using Newmark's method for a beam with no

dampers and subj ected to a 4 Ib. force at a frequency of 2 Hz. After 1

second, the forcing function is removed and the beam is allowed to vibrate

freely. Figure 41 shows the response of the same system with a forcing

function frequency of 6 Hz. This frequency corresponds to a frequency ratio

Q/tafe °f 0.95, where U)fe - 6.3 Hz is the natural frequency of the beam from

the finite element solution. Clearly, this represents a nearly resonant

condition as expected. After 1 second, the forcing function is removed and

the member is allowed to vibrate freely.

Figures 42 shows the finite element and experimental curves for the

member with no dampers and subjected to a 4.0 Ib. force at a frequency of 2

Hz. Although the forced vibration portions of the two curves at ft - 2 Hz

are quite similar, the free vibration amplitudes differ significantly. The
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reasons for this difference may be as follows. In the experiment, the

forcing function was terminated by pulling the pin RS from the vibrator

connector shown in Figure 16. During the tiny time interval in which the

pin was being pulled out, the contact and frictional forces involved in

disengaging the segment QR from RU were unintentionally transferred to the

members thereby retarding its initial amplitude in the free vibration range.

Consequently, the ensuing envelope of the experimental free vibration A-t

curve is considerably narrower than the theoretical one. Similar effects

are observed in Figure 43 which shows the finite element and experimental

results when one silly putty in chamber damper is used.

At larger lvalues such as those of the order of 6 Hz, the ^-t

relations from the finite element analysis do not match the experimental

ones even in the forced vibration range. This is primarily due to the

constraints imposed by the vibrator on the maximum member deflecting as

explained earlier in Section 3.5.

4.3 Finite Element Analysis for Forced Vibration

As mentioned earlier, the vibrator used in the experimental study

constrained the motion of the member in the presence of a forcing function.

As a result, the actual effect of passing damping could not be observed for

this condition. Therefore, a numerical study was conducted to examine the

effect of passive damping in the presence of the forcing function. In this

section, the theoretical results showing both the extent of damping which

would occur during the forced vibration and the effect of the dampers on the

deflection-time envelopes are presented and discussed. Figure 44 shows the

theoretical dynamic magnification factor (DMF), AD/Ag, versus the frequency

ratio fyton for damping ratios of 0.0094, 0.0131 and 0.50. The first two
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values of the damping ratios were obtained from the member tests with no

dampers, and 3 copper brush dampers, respectively. As can be seen in this

figure, the copper brush dampers do not change the DMF appreciably for non-

resonance frequency ratios. However, the dampers reduce the DMF by

approximately 7% at resonance.

Figure 45 shows the deflection versus time relationship for the member

with no dampers and with three copper brush dampers, with a forcing function

frequency of 6.35 Hz (fi/ô  —1.0) for one second, and allowed to vibrate

freely thereafter. These curves show that the passive damping results in a

member amplitude reduction in the forced vibration range, however, its most

beneficial effect occurs during the free vibration. After 3 seconds of free

vibration, the amplitudes of the member with dampers are approximately 40%

less than those corresponding to the empty member.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The following conclusions are drawn from the research conducted herein:

1. The silly putty in chamber concept provides the maximum passive

\
damping efficiency under member natural vibration, as compared to

the copper brush or the wool swab concepts.

2. The copper brush concept provides the largest damping ratio of the

system under natural vibration.

3. Due to the limitation of the vibrator used, the effectiveness of

.the passive damping concepts could not be evaluated until the

forcing function was disengaged.

4. Frictional and contact forces acting on the member during

disengagement from the vibration apparatus caused a reduction of

the ensuing free vibration member amplitude.

5. The theoretical results indicate that in the presence of a forcing

function, the passive damping devices provide the most effective

damping in the vicinity of the resonant frequency.

6. The theoretical results show that passive dampers are

considerably more effective under member natural vibration than

during forced vibration.

7. Under natural vibration, the finite element solution results in

periods which are nearly 30 percent greater than the experimental

ones. However, amplitudes are reasonably accurate. The accuracy

of the results is improved when the member ends are pinned or

fixed.
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5.2 Future Research

The most successful passive damping concepts identified herein should

be examined using forced vibration equipment which would allow investigation

of their effectiveness at or near resonance. Attempts should be made to

identify a means of disengaging an applied force without adversely affecting

the dynamic response of the member. These tests should be conducted on both

individual members and structure sub-assemblies.
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Table 1. Member natural vibration test results for copper
brush, wood swab, and silly putty in chamber dampers.

PASSIVE
DAMPING
CONCEPT

No Dampers

Copper

Brush

Dampers

Wool

Swab

Dampers

Silly

Putty

in

Chamber

Dampers

NUMBER OF
DAMPERS

1

2

3

5

7

1

2

3

5

7

1

2

3

5

7

11

WEIGHT OF
DAMPING
ASSEMBLY

(GM)

0.00

13.0

26.0

39.0

65.0

91.0

7.10

14.20

21.30

AVERAGE
DAMPING
RATIO

5

0.0094

0.0098

0.0107

0.0131

0.0129

0.0097

0.0099

0.0102

0.0105

35.50 j 0.0101

49.70 0.0091

7.8 0.0100

15.6

23.4

39.0

54.6

85.8

0.0113

0.0115

0.0109

0.0097

0.0094

DAMPING .
EFFICIENCY

INDEX
(IN/LB.-SEC2)

0.00

5.39

8.76

16.72

9.44

0.48

12.34

9.87

9.05

3.46

-0.99

13.48

21.35

15.73

6.74

0.96

0.00

33



Table 2(a). Damping ratios from natural vibration tests with copper
brushes and no cord tension.

Number of Devices

1

2

3

5

7

? 1

0.0097

0.0097

0.0098

0.0094

0 . 0095

? 2

0.0095

0.0097

0.0096

0.0096

0.0095

? 3

0.0095

0.0097

0.0096

0.0094

0.0096

C.AVG

0.0096

0.0097

0.0097

0.0095

0.0095

Table 2(b). Damping ratios from natural vibration tests with copper
brushes and nominal cord tension.

Number of Devices

1

2

3

5

7

r
i

0.0097

0.0105

0.0133

0.0129

0.0096

?

0.0102

0.0109

0.0128

0.0131

0.0098

0̂.0096

0.0108

0.0131

0.0128

0.0095

£ AVG

0.0098

0.0107

0.0131

0.0129

0.0096
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Table 3 (a); Damping ratios for natural vibration tests with wool
brushes and concentric cord support.

Number of Devices

1

2

3

5

7

\

0.0098

0.0100

0.0107

0.0096

0.0094

\

0.0097

0.0098

0.0108

0.0100

0.0094

53

0.0098

0.0101

0.0101

0.0097

0.0094

AVG

0.0098

0.0100

0.0105

0.0098

0.0094

Table 3(b). Damping ratios for natural vibration tests with wool
brushes and eccentric cord support.

Number of Devices

1

2

3

5

7

? t

0.0099

0.0103

0.0105

0.0099

0.0093

?
2

0.0099

0.0101

0.0105

0.0102

0.0090

£
3

0.0098

0.0101

0.0105

0.0102

0.0090

e
AVG

0.0099

0.0102

0.0105

0.0101

0.0091
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Table 4(a). Damping ratios for natural vibration tests with silly
putty and no cord tension.

Number of Devices

1

2

3

5

7

<4

0.0096

0.0099

0.0101

0.0095

0.0094

£ 2

0.0097

0.0099

0.0101

0.0095

0.0092

53

0.0096

0.0102

0.0101

0.0093

0.0096

^AVG

0.0096

0.0100

0.0101

0.0094

0.0094

Table 4(b). Damping ratios for natural vibration tests with silly
putty and nominal cord tension.

Number of Devices

1

2

3

5

7

11

*i

0.0104

0.0112

0.0112

0.0109

0.0096

0.0094

^2

0.0096

0.0115

0.0115

0.0109

0.0099

0.0094

^3

0.0100

0.0113

0.0117

0.0109

0.0096

0.0094

^AVG

0.0100

0.0113

0.0115

0.0109

0.0097

0.0094
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Table 5. Member forced then free vibration test results for silly putty
in chamber dampers.

Passive Forcing
Damping Function
Concept Frequency

(Hz)

No
Dampers

1 Silly
Putty
in
Chamber
Damper

2 Silly
Putty
in
Chamber
Damper

3 Silly
Putty
in
Chambei
Damper

2

5

7

9

12

2

5

7

9

2

5

7

9

2

5

7

9

12

Constrained
Dynamic AD*/AS
Amplitudes J
AD* in.

0.067

0.073

0.070

0.067

0.047

0.062

0.073

0.067

0.067

0.065

0.075

0.067

0.065

0.063

0.075

0.068

0.068

0.047

0.84

0.92

0.88

0.84

Initial
Free
Vibration
Amplitude
AF max in

0.030

0.067

0.077

0.082

0.59 I 0.082

0.78

0.92

0.84

0.030

0.063

0.070

0.84 0.073

0.82

0.95

0.84

0.82

0.80

0.95

0.86

0.86

0.59

0.030

0.060

0.053

0.083

0.030

0.057

0.077

0.090

0.082

AF/AS

0.38

0.84

0.97

1.03

1.03

0.38

0.80

0.88

0.92

0.39

0.76

0.67

1.05

0.38

0.71

0.97

1.14

AF/A*D

0.45

0.91

1.10

1.23

1.75

0.48

Average ^
Damping
Ratio
£ Avg.

1

0.0043 '

0.0072 ;

0.0073 ,

0.0069
•

0.0025 !

0.0058 • 33.7

0.86 ' 0.0089 38.2

1.05

1.10

0.0089 j 36.0
i

0.0080 24.17

0.48 0.0049 ; 6.7
ii

0.80

0.80

1.28

0.47

0.76

0.0069 (-3.4)

0.0076 3.4
I

0.0080 12.4

0.0057 ; 10.5

0.0055 '(-12.7)

1.12 0.0064 i (-6.7)

1.32

1.03 ! 1.75
i
J

i
0.0082 9.7

0.0036 8.2
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Partial
Rotat ional
Restraint

1
T

F(t )

14.75'

Member

Cross Sect ion

Figure 1. Schematic of tubular member
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. a b c cl

k NI

Figure 2. Example of finite element model for the beam.
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(b) Edge View between aa and bb

Figure 3. Some end connection details
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Figure 4. Member end connection
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Figure 5. Copper brush damper
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Tubular Member

Helical Spring

Nylon Chord

Copper Brush
Damper

Nylon Chord
tied to Vertical

Clevis of Connection

Figure 6. Schematic of attachments for passive
damper inside tubular member
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Typical Damper

Member

Figure 7. Schematic for spacing of passive dampers
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Figure 8- Helical spring attachment at end e
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Figure 9. Stretched helical spring at end e
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10' damper
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Figure 11. Silly putty in chamber damper
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Deflect ion —
Time Curve

Plotter

Vibration
nstrumentatior

Probe

w

Figure 12. Schematic of member natural vibration setup
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Figure 13. Proximity probe
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Figure 14. Member forced vibration setup
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2^^e>

Vibrator

Deflect ion-
Time Curve

Plotter

Vibration
nstrumentatior

Probe

-Vibrator Connector

Oscil lator

Figure 15 . Schematic of member forced vibration setup
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8 — 32 Threads

U

R

Q

2 3/8"

6 3/8"

V\— ft —8 — 32 Threads

Figure 16. Vibrator, connector details
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INl

(a) Vibrator connector
in engaged position

(b) Disengaged vibrator
connector

Figure 17. Vibrator connector in engaged and
disengaged positions
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ORIGINAL
OF POOR QUALSTH

1.0 2.0 3.0 4.0- 5.D- 6'.0 7.0

T (sec)

(a) 2 Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

(b) 5 Hz

-0. 12

1.0 2.0 3.0 4.0- 5.0- 6'.0 7.0

T (sec)

(c) 7 Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

(d) 9 Hz

Figure 29. Experimental A-t plots for member "constrained" forced
then free vibration with no dampers and frequencies of 2, 5, 7 and 9 Hz.
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1.0 2.0 3.0 4.0- 5.0- 6:0 7.0

T (sec)

. (a) 2 Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

(b) 5 Hz

I 1 1—.—I——I
1.0 2.0 3.0 4.JO- 5.0- 6.0 7.0

T (sec)

(c) 7 Hz

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

(d) 9 Hz

Figure 30. Experimental A-t plot for member "constrained" forced then free
vibration with 2 silly putty in chamber damper and forcing function frequencies
of 2, 5, 7 and 9 Hz.
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Figure 31. Experimental A-t plot for member "constrained" forced then free
vibration with 1 silly putty in chamber damper and forcing function frequencies
of 2, 5, 7 and 9 Hz.
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Figure 32. Experimental A-t plots for member "constrained" forced then
free vibration with 3 silly putty in chamber dampers and forcing function
frequencies of 2, 5, 7, and 9 Hz.
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2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

Theoretical curve with ideal
disengagement.

Experimental curve with mechanical
disengagement.

Figure 42. Theoretical and experimental forced then free A-t plots for a 4.0 Ib.
force at 2 Hz for 1 second on member with one silly putty in chamber damper.
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1 1—.—I—••—I-0. 12

1.0 2.0 3.0 4.X) 5.0 6.0 7.0

T (sec)

Theoretical curve with ideal
disengagement.

1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (sec)

Experimental curve with mechanical
disengagement.

Figure 43. Theoretical and experimental forced then free A-t plots for a 4.0 Ib.
force at 2 Hz for 1 second on member with no dampers.
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Figure 44. Theoretical dynamic magnification factor versus frequency

ratio for damping ratios of 0.0094, 0.0131, and 0.50.
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APPENDIX A

EXAMPLE OF FOUR ELEMENT BEAM STIFFNESS MATRIX

In this appendix the procedure used to assemble the beam stiffness

matrix using a beam composed of four elements is presented.

The typical element stiffness matrices for Elements b and c as shown in

Figure 2 are given as (Reference 6):

[K]b.c

12EI 6EI
L3 17

4EI
L

-

Symmetric

-12EI
L3

-6EI
17

12EI
17

6EI
17"

2EI
17

-6EI
L2

4EI
L

(A.I)

Since only planar motion is considered, axial effects are negligible and,

therefore, not included in the element stiffness matrix.

Derivation of the stiffness matrix for Element a as shown in Figure 2

is as follows. The flexibility matrix for the element is given by:

[F] = [HJMFI^IH] + [F]m + [F]C2 (A.2)

in which [H] is the equilibrium matrix given by:

'l 0 6"

(A.3)[H] 0

0

1

0

L

1

and [F]cl represents the flexibility of the connection at end one, [F]m is

the flexibility of the element itself and [F]c2 is the flexibility of the

connection at end two. These are defined as follows:
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[F]cl

0 -

0

0

L
4EIk

(A.4)

[F]c2

L3

3EI

L2

2EI

0

0

L2

2EI

L
El

0

L .
4EI _

(A. 5)

(A.-6)

therefore the flexibility matrix in full can be written as

L3 A 1\ L2

El \̂ 3 4k/

[F] -,

The inverse of [F] is given b'y:

CK22]22a

3EI (4k + 1)
L3" (k + 1)

-3EI (2k + 1)
L2 (k + 1)

-3EI (2k + 1)
L2 (k + 1)

El
L

(4k + 3)
(k + 1)

The other stiffness matrices now follow from:

[H] [K22]'

3EI (4k + 1)
T3" (k + 1)

3EI (2k)
L2" (k + 1)

3EI
L2"

(2k)
(k + 1)

El (4k)
L (k + 1)

(A. 7)

(A.8)

(A. 9)
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[K21] f c = - [H] [K22]

-3EI (4k + 1)
Tr~(k + 1)

-3EI (2k)
L 2 ( k + 1)

3EI (2k + 1)
l7~(k + 1)

El
L

(2k)

(A.10)

(k + 1)

Therefore, the total stiffness matrix for Element a is:

(2k)3EI (4k + 1) 3EI
L3" (k + 1) L2" (k + 1)

El
L

(4k)
(k + 1)

Symmetric

-3EI (4k + 1) 3EI (2k + 1)
LJ (k + 1) 17" (k + 1)

-3EI (2k)
T2" (k + 1)

El (2k)
L (k + 1)

(A.11)

3EI (4k -t- 1) -3EI (2k + 1)
17 (k + 1) L2 (k + 1)

El
L

(4k + 3)
(k + 1)

Similarly, Element d shown in Figure 2:

[K22 J

3EI (4k + 1)
L3" (1 + k)

-6EI (k)
L2"" (1 + k)

-6EI (k)
L2 (1 + k)

4EI (k)
(1 + k)

(A.12)

[H] [K22]d [H*]

3EI (4k + 1)
L3 (1 + k)

3EI (2k + 1)
7 (1 + k)

3EI (2k + 1)
L2 (1 + k)

El (4k + 3)
L (1 + k)

(A.13)

87



-[H] [K]

3EI (4k + 1)
L3 (1 + k)

-3EI (2k + 1)
L2 (1 + k)

6EI
L2

2EI
L

k
(1 + k)

(k)
(k + 1)

(A.14)

3EI (4k + 1) 3EI (2k + 1) -3EI (4k + 1) 6EI (k)
L3"" (1 + k) l7~ (1 + k) I/3 (k + 1) T2" (k + 1)

El
L

(4k + 3) -3EI (2k + 1) 2EI
(1 + k) ~Ll (1 + k) L (1 + k)

(k)

Symmetric
3EI (4 + 1)
L3" (1 + k)

-6EI (k)
I/ (1 + k)
4EI (k)

(1 + k)

(A.15)

Using the above element matrices, the following global matrix is assembled:

[K]

[Kil. [0] [0] ,

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

,+ [K,

[0]

(A. 16)

This is an n x n matrix where n - 2N + 2 , and N = the number of elements .

The first two boundary conditions are enforced by putting 1.0 in the

diagonal corresponding to the translational degrees of freedom at the

supports and setting all other entries in that row and column equal to zero.

The last two boundary conditions are accounted for in the derivation of the

individual stiffness matrices.

Note that an adjustment to the stiffness matrix must be made when the
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APPENDIX B

COMPUTER PROGRAMS

As a part of this study, two computer programs were developed to solve

the dynamic equilibrium matrix equation given in Chapter 2. A brief

description of these programs along with their listings and sample outputs

are given in this appendix.

B.1 NEWMARK

This program is based on the analysis described in Section 2.2. A

description of the required input data is given at the beginning of the

program listing. Data is input by means of the data statements in lines 48

to 53 of the program listing. The output consists of the time in seconds

and corresponding midspan deflection in inches.

B. 2 CENDIF

Program CENDIF is based on the analysis described in Section 2.3. Data

input and output are the same on NEWMARK.

. 90 .



FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY — CMS — 4.2

IMPLICIT REALftS(A-H.O-Z)
NEW00010
NEW00020
NEW00030

DOUBLE PRECISION L.K1 ,K2,K(70,70) ,M(70,70) ,C(70,70) , U (70) ,UDT(70) .NEW00040
6RT(70) ,Cl (70,70) ,C2(70,70) ,C9(70,70) ,C4(70) ,KEL(4,4) , F (70) ,C5(70) .NEW00050
6DUM(70) ,UT(70) ,MINV(70,70) ,C8(70,70) ,UDTP(70) ,UDDT(70) ,UDDTP(70) ,UNEW00060
STP (70) , UTN (70) , C3 (70) , C6 (70) , FREQ (5) , K INV (70, 70) , X (70, 70) , A (70, 70) NEW00070
6,8(70,70) ,0(70) ,EIGV(70) ,DAMRAT(70) ,ANS(70,70) ,RES (70,70) ,XT (70, 70NEW00080
&)
IFPR=0

C*ft*************ftft***
C**

INPUT DATA

IFPR = PRINT REQUEST VARIABLE FOR JACOBI
0 = 00 NOT PRINT INTERMEDIATE VALUES
1 = PRINT INTERMEDIATE VALUES

C** L = LENGTH (IN)

C**
C**
C**

Cft*

C**

C**

C** NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER)

TS = TIME STEP; DELTA 'T1 (SEC)

ROW = MASS PER UNIT LENGTH (KIP*SEC**2/IN**2)

E = MODULUS OF ELASTICITY (KSI)

XI = MOMENT OF INERTIA (IN**4)

AR = AREA (INft*2)

Cft* Kl = ROTATIONAL STIFFNESS AT END 1 (K*IN/RAD)

K2 = ROTATIONAL STIFFNESS AT END 2 (K*IN/RAD)

C**
C**

C**
C**
Cft* ZETA = DAMPING RATIO

TT

PO

TOTAL TIME FOR PROGRAM EXECUTION (SEC)

MAGNITUDE OF THE FORCING FUNCTION (KIPS)

C**
C**
C**
C**
C** OMEGA = FREQUENCY OF THE .FORCING FUNCTION (RAD)
Cft*
C** DELO = PRESCRIBED INITIAL DEFLECTION AT MEMBER MIDSPAN
C** (IN)
C**
Cft****ft*ft**********ftftft***ft***********ft***ftftftft****ftftft**ftftft*ftft*****

*****************************
**
ft*
**
ft*
ft*
ft*
**
ft*
**
**
**
ft*
ft*
**
ft*
**
**
ft*
**
**
ft*
**
*ft
ft*
**
**
**
**
**
ft*
**
ft*
**
**

DATA L,NUMEL,TS,ROW/ 177,10,0.000500,202.1454E-09/
DATA E,XI,AR/10000.,0.32500000,0.73&3/
DATA Kl,K2,TT/53.nOO,53.HOO,6.00/
DATA PO,OMEGA,ZETA/0.002226367,12.56637062,0.007200/
DATA GAMA,BETA,DELO/0.50,0.25,0.007914/

ICOUNT=0

NEW00090
NEW00100
NEW00110
NEW00120
NEW00130
NEW00140
NEW00150
NEWOO 160
NEW00170
NEW00180
NEW00190
NEW00200
NEW00210
NEW00220
NEW00230
NEW00240
NEW00250
NEW00260
NEW00270
NEW00280
NEW00290
NEW00300
NEW00310
NEW00320
NEW00330
NEW00340
NEW00350
NEW00360
NEW00370
NEW00380
NEW00390
NEW00400
NEW00410
NEW00420
NEW00430
NEW00440
NEW00450
NEW00460
NEW00470
NEW00480
NEW00490
NEW00500
NEW00510
NEW00520
NEW00530
NEW00540
NEW00550

91



FILE: NEWMARK FORTRAN A OLD DOMINION UNIVERSITY — CMS --

TIME=0.0
WRITE (2,1)

H=L/NUMEL
1 FORMAT (/I X,'THIS IS NEWMARKS SOLUTION1)

WRITE (2,1059)Kl
1059 FORMAT(/1X,'STIFFNESS -- '.D16.9)

WRITE (2,1060)ZETA
1060 FORMAT (/1X,'DAMPING '.D16.9)

WRITE(2,106l)PO
1061 FORMAT (/I X,'FORCE '.D16.9)

WRITE(2,1062)OMEGA
1062 FORMAT (/1X,'FREQUENCY -- ',Dl6.9)

N=2*NUMEL+2

C WRITE (2,176)
C WRITE (2,177)

DO 10 1*1,N
DO 10 J=1,N

10 K(I,J)=0.0

K(l,1)=1000
K(N-1,N-1)=1000

K(2,2)=E*XIM.*K1/(H*(K1 + 1 .))
K(2,3) = (-1.)*3.*E*XI*2.*K1/((H**2)*(Kl + 1 .))
K(2,M=E*XI*2.*K1/(H*(K1+1 .))
K(3,2)-K(2,3)
K (3, 3) =3. *E*X I * (k. *K 1 + 1.) / ((H**3) * (K 1 + 1 .))
K(3,'»)-(-3.)*E*XI*(2.*Kl + l.)/
K(J»,2)-K(2,J»)
K(4,3)"K(3,'»)
K(l*,lt)=E*XI*(l».*Kl+3.)/(Hft(Kl + l.)

K (N-3, N-3) =3.*E*XI* (**.*K2+1 .) / ((H**3) * (K2+1 .) )
K (N-3, N-2) = (3 .) *E*X I * (2.*K2+1 .) / ( (H**2) * (K2+1 .) )
K (N-3 , N) =6 . *E*X I *K2/ ( (H**2) * (K2+1 . ) )
K(N-2,N-3)=K(N-3,N-2)
K (N-2 , N-2) =E*X I * (k . *K2+3 .) / (H* (K2+ 1 . ) ) .

K(N,N-3)=K(N-3,N)
K(N,N-2)=K(N-2,N)
K(N,N)=E*XI*A.*K2/(H*(K2+1.))

KEL(l.l)
KEL(1,2)
KEL(1,3)
KEL(1,M

'l2.*E*XI/(H**3)
6.*E*XI/(H**2)

= KEL(1,2)

NEW00560
NEW00570
NEW00580
NEW00590
NEW00600
NEW00610
NEW00620
NEW00630
NEW00640
NEW00650
NEW00660
NEW00670
NEW00680
NEW00690
NEW00700
NEW00710
NEW00720
NEW00730
NEW007UO
NEW00750
NEW00760
NEW00770
NEW00780
NEW00790
NEW00800
NEW00810
NEW00820
NEW00830
NEW00840
NEW00850
NEW00860
NEW00870
NEW00880
NEW00890
NEW00900
NEW00910
NEW00920
NEW00930
NEW00940
NEW00950
NEW00960
NEW00970
NEW00980
NEW00990
NEW01000
NEW01010
NEW01020
NEW01030
NEWOlOitO
NEWO 1050
NEWO 1060
NEW01070
NEW01080
NEW01090
NEW01100
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KEL(2,2)
KEL(2,3)
KEL (2,4)
KEL(3,3)
KEL(3,4)
KEL (4,4)

= 4.*E*XI/(H)
= (-l.)*KEL(l,2)
= KEL(2.2)/2.
= KEL(l.l)
= KEL(2,3)
= KEL(2,2)

IF(K(2.2) .LE.0.00001) K(2,2) = 1.0
IF(K(N,N) .LE.0.00001) K(N,N)-1.0
DO 30 1=1,4
DO 30 J=l,4

30 IF(J.GT.I)KEL(J,I)"KEL(I,J)

DO 50 JK =2,NUMEL-1
Il=JK*2-2
JJ=I I
DO 45 1=1,4
DO 40 J=l,4

K ( I I + I,JJ+J) = K(l l + l ,JJ+J)+KEL(I,J)

40

50

66

70
75

CONTINUE
CONTINUE
CONTINUE

DO 75 1=1, N
DO 70 J=1,N
M(l ,J)=0.0
C(l ,J)=0.0
CONTINUE
CONTINUE

M(2,2)=H**2
M(N-l,N-l)-39.
M(N,N)=H**2

DO 80 l=3,N-3,2
J-l + 1

80 CONTINUE

DO 90 1=1, N
90 M(l, l)=M(l,l)*(ROW*H/78.)

CALL JACOBI (K.M.N, IFPR.X.EIGV)
DO 95 1=1, N

95 DAMRAT(I)=ZETA

CALL DAMP(N,EIGV,X,M,DAMRAT,C)

PRINT*,'IN START1

DO 300 1=1,N

NEW01110
NEW01120
NEW01130
NEW01140
NEW01150
NEW01160
NEW01170
NE WO 11 80
NEW01190
NEW01200
NEW01210
NEW01220
NEW01230
NEWO 12M)
NEW01250
NEWO 1260
NEW01270
NEWO 1280
NEW01290
NEWO 1300
NEW01310
NEWO 1320
NEW01330
NEWO 1340
NEWO 1350
NEWO 1360
NEWO 1370
NEW01380
NEW01390
NEWO 1400
NEW01U10
NEWOH20
NEW01U30

NEWOU50
NEWO 1460
NEWO 1 470
NEWO 1480
NEWO 1490
NEWO 1500
NEW01510
NEW01520
NEW01530
NEWO 1540
NEWO 1550
NEWO 1560
NEW01570
NEWO 1580
NEWO 1590
NEWO 1600
NEW01610
NEW01620
NEW01630
NEWO 1640
NEWO 1650
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320

120

122

300 RT(I)=0.0
PI=ACOS(-1.0)
RT (N/2)=PO* (DCOS(OMEGA^TI ME))

CALL INVERT(M.MINV.N)

DO 333 I=1,NUMEL+1
DUM1=K1*L/(U*PI*E*XI)

. Z-PI*H*(I-1)/L
UT (2* I) = (DELO/ (1 .+DUM1 *2)) * ((PI /L*DCOS (Z)) + (DUM1 *2*P I /L*DS I N (2*Z)
&))
UT (2* I -1) = (DELO/ (1 .+DUM1*2)) * (DS I N (Z) +DUM1 * (1 . -DCOS (2*Z) ))

333 CONTINUE
DO 302 1=1,N
SUM=0.0
DO 301 J=1,N

301 SUM=SUM+K(I,J)*UT(J)*(-1 .)
302 DUM(I)=SUM

DO 306 1=1,N
SUM=0.0
DO 305 J=1,N

305 SUM=SUM+MINV(I,J)*DUM(J)
306 UDDT(I)=SUM

310

DO 310 1=1,N
UDT(I)=0.0
CONTINUE

PRINT*,'OUT START1

DO 320 1=1,N
DO 320 J-l.N
C1 (I , J) = K (I , J) +GAMA*C (I , J) / (BETA*TS) +M (I , J) / (BETA* (TS**2))
CALL INVERT(C1,C2,N)
DO 122 1=1,N
C3(I) = (GAMA/(BETA*TS))*UT (I) + (GAMA/BETA-1.0)*UDT(I)+TS*((GAMA/(BE
&TA*2.))-1.0)*UDDT(I)

NEWO 1660
NEW01670
NEWO 1680
NEW01690
NEWO 1700
NEW01710
NEW01720
NEW01730
NEW01740
NEW01750
•NEW01760
NEW01770
NEW01780
NEW01790
NEW01800
NEW01810
NEW01820
NEW01830
NE WO 181+0
NEW01850
NEWO i860
NEW01870
NEW01880
NEW01890
NEWO 1900
NEW01910
NEW01920
NEW01930
NEWO1940
NEWO 1950
NEWO I960
NEW01970
NEW01980
NEW01990
NEW02000
NEW02010
NEW02020
NEW02030
NEW020UO

CM I) -UT (I) / (BETA* (TS**2)) +UDT (I) / (BETA*TS) + ((1 ./ (2. *BETA)) -1 .0) *UNEW02050

125
130

&DDT(I)
CONTINUE

DO 130 1=1,
SUM=0.0
DO 125 J-l,
SUM=SUM+C(I
C5(D=SUM

N
,J)*C3(J)

kOO

DO k]Q 1=1,N
SUM=0.0
DO 400 J=1,N
SUM=SUM+M(I ,J)*CMJ)
C6(I)=SUM

NEW02060
NEW02070
NEW02080
NEW02090
NEW02100
NEW02110
NEW02120
NEW02130
NEW02140
NEW02150
NEW02160
NEW02170
NEW021&0
NEW02190
NEW02200
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420

425
430

_

199
200

141

143

150

161

175
176
I ^T77

500

1

10

DO 420 1=1, N
F (I)=RT(I)+C5(0+C6(I)

DO 430 1=1, N
SUM=0.0
DO 425 J=1,N
SUM=SUM+C2(I ,J)*F (J)
UTP(I)=SUM

ICOUNT=ICOUNT+1
TIME=TIME+TS
IF (TIME. GT. 1.00) GO TO 199
RT (N/2) =PO* (DCOS (OMEGA*T 1 ME) )
GO TO 200
RT (N/2) =0.0
EXACT=0.0
JEST=1
IF (ICOUNT.EQ.IO)GO TO 141
GO TO 143
WRITE(2,175)TIME,UTP(N/2) ,JEST
1 COUNT=0

DO 150 1=1, N
UDDTP ( 1 ) = (UTP ( 1 ) -UT ( 1 ) - (TS*UDT (!))-( (TS**2) * (0 . 5-BETA) *UDDT ( 1

&(1./((TS**2)*BETA))
CONTINUE

DO 161 1=1, N
UDTP ( 1 ) =UDT ( 1 ) -t-TS* ( ( ( 1 .0-GAMA) *UDDT ( 1 ) ) + (GAMA*UDDTP ( 1 ) ) )
UT(I)-UTP(I)
UDT(I)=UDTP(I)
UDDT(I)=UDDTP(I)
CONTINUE

IF (TIME.GT.TT)GO TO 500

GO TO 120
FORMAT(F10.8,1X,F10.8,1X, 11)
FORMAT(/1X,' TIME DEFLECTION AT L/21)

c l\
o 1

STOP
END

SUBROUTINE 1 NVERT (AO, A,N)
DOUBLE PRECISION A (70,70) , AO (70,70)

DO 1 1=1, N
DO 1 J=1,N
A(I,J)-AO(I,J)

NP=N+1
A(1,NP)=1.0
DO 10 1=2, N
A(I,NP)=0.0

NEW02210
NEW02220
NEW02230
NEW02240
NEW02250
NEW02260
NEW02270
NEW02280
NEW02290
NEW02300
NEW02310
NEW02320
NEW02330
NEW02340
NEW02350
NEW02360
NEW02370
NEW02380
NEW02390
NEW02400
NEW02410
NEW02420
NEW02430

I)))*NEW02440
NEW02450
NEW02460
NEW02470
NEW02480
NEW02490
NEW02500
NEW02510
NEW02520
NEW02530
NEW02540
NEW02550
NEW02560
NEW02570
NEW02580

M cun T^nnNcWU^DUU

NEW02610
NEW02620
NEW02630
NEW02640
NEW02650
NEW02660
NEW02670
NEW02680
NEW02690
NEW02700
NEW02710
NEW02720
NEW02730
NEW02740
NEW02750
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20

30

C
C
C1051
C
C
C
C
C
C1010
C
C
C
C1020
C1001
C1110

1980

DO UO J=1,N
DO 20 LX=1,N
A(NP,LX)=A(1,LX+1)/A(1,0
DO 30 KX=2,N
DO 30 LX=1,N
A (KX-1 ,LX) =A (KX.LX+1) -A (KX, 1) *A (NP, LX)
DO AO LX=1,N
A(N,LX)=A(NP,LX)

RETURN
END
SUBROUTINE JACOBI (K.M.N, I FPR.X, E I GV)
SUBROUTINE JACOBI
IMPLICIT REAL*8(A-H,0-Z)
DOUBLE PRECISION A (70, 70) , B (70, 70) ,X (70, 70) ,E I GV (70) ,D (70)
SK(70,70),M(70,70)

IFPR=0
COMMON/K.M/
WRITE (2, 1051)
FORMAT(/1X,' INPUT DATA ')
READ(1,*)N, IFPR
WRITE (2, 1001)N, IFPR
DO 1010 I=1,N
READ(1.*) (A(l ,J) ,J=1,N)
WRITE (2, 1110) (A(l ,J) ,J=1,N)

CONTINUE
DO 1020 1=1, N
READ(1,*) (B(I,J) ,J=1,N)
WRITE (2,1 110) (B(l ,J) ,J=1,N)

CONTINUE
FORMAT (2 I 10)
FORMAT (8 F10.1»)

DO 2 1=1, N
DO 1 J-l.N
A(I,J)=K(I
B(l ,J)=M(I
CONTINUE
CONTINUE
NSMAX=15
WRITE (2, 1980)
FORMAT (/I X, ' EIGENVALUES ')
RTOL=1.D-12
I OUT=2
DO 10 1=1, N
IF (A (I , I) .GT.

10

20
30

,J)
,J)

O.AND.B(I , I) .GT.O.)GO TO
WRITE (I OUT, 2020)
STOP
D(I)=A(I,I)/B(I,I
EIGV(I)=D(I)
DO 30 1=1, N
DO 20 J=1,N
X(I,J)=0.
X(l, 0=1.0
IF (N.EQ.l) RETURN

NEW02760
NEW02770
NEW02780
NEW02790
NEW02800
NEW02810
NEW02820
NEW02830
NEW028UO
NEW02850
NEW02860
NEW02870
NEW02880
NEW02890
NEW02900
NEW02910
NEW02920
NEW02930
NEW029'*0
NEW02950
NEW02960
NEW02970
NEW02980
NEW02990
NEW03000
NEW03010
NEW03020
NEW03030
NEW030*tO
NEW03050
NEW03060
NEW03070
NEW03080
NEW03090
NEW03100
NEW03110
NEW03120
NEW03130
NEW03HO
NE WO 3 150
NEW03160
NEW03170
NEW03180
NEW03190
NEW03200
NEW03210
NEW03220
NEW03230

NEW03250
NEW03260
NEW03270
NEW03280
NEW03290
NEW03300
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C
C
C

I N I T I A L I Z E SWEEP COUNTER AND EIGEN ITERATION

NSWEEP=0
NR=N-1
NSWEEP=NSWEEP+1
IF (IFPR.EQ.1)WRITE(IOUT,2000)NSWEEP

NEW03310
NEW03320
NEW03330

C
C
C

PRINT*

CHECK IF

EPS={0
DO 210
JJ=J+1
DO 210

SWEEP NUMBER. .NSWEEP

PRESENT OFF DIAGONAL ELEMENT IS TOO LARGE

,01**NSWEEP)**2
J=1,NR

K1=JJ,N
IF (DABS(A(J,K1)) .LT.1.D-20)GO TO 211 '
EPTOLA= (A (J, K1) *A (J, K1)) / (A (J , J) *A (K 1, K1))
GO TO 212

211 EPTOLA=0.0
212 EPTOLB- (B (J , K1) *B (J , K1)) / (B (J , J) *B (K 1 . K1))

IF((EPTOLA.LT.EPS).AND.(EPTOLB.LT.EPS))GO TO 210
AKK=A (Kl ,K1) *B (J.K1) -B (Kl,Kl) *A(J,K1)
AJJ-A(J.J)*B(J.K1)-B(J,J)*A(J,K1)
AB=A (J , J) *B (K 1, K1) -A (K 1, K1) *B (J, J)
CHECK= (AB*AB+1*. *AKK*AJJ) /k.
IF (CHECK)50,60,60

50 WRITE(I OUT,2020)
STOP

60 SQCH=DSQRT(CHECK)
Dl=AB/2.+SQCH
D2=AB/2.-SQCH
DEN=D1
IF (DABS(D2) .GT.DABS(D1))DEN=D2
IF (DEN)80,70,80

70 CA=0.
CG=(-1 .)*A(J,K1)/A(K1,K1)
GO TO 90

80 CA-AKK/DEN
CG=(-1 .)*AJJ/DEN

90 IF (N-2)100,190,100
100 JP1=J+1

JM1=J-1
KP1=K1+1
KM1=K1-1
IF (JM1-1)130,110,110

110 DO 120 1=1,JM1
AJ=A(I ,J)
BJ=B(I ,J)
AK=A(I ,K1)
BK=B(I,K1)
A(l,J)=AJ+CGftAK
B(I,J)=BJ+CG*BK
A (I ,K1)=AK+CA*AJ

120 B(l ,K1)=BK+CA*BJ 97

130 IF (KP1-N) U»0,H»0,160

NEW03350
NEW03360
NEW03370
NEW03380
NEW03390

NEW03J+50

NEW03470
NEW031»80
NEW031*90
NEW03500
NEW03510
NEW03520
NEW03530
NEW035AO
NEW03550
NEW03560
NEW03570
NEW03580
NEW03590
NEW03600
NEW03610
NEW03620
NEW03630
NEW03640
NEW03650
NEW03660
NEW03670
NEW03680
NEW03690
NEW03700
NEW03710
NEW03720
NEW03730

NEW03750
NEW03760
NEW03770
NEW03780
NEW03790
NEW03800
NEW03810
NEW03820
NEW03830
NEW038UO
NEW03850
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T»0 DO 150 I-KP1.N
AJ=A(J, I)
BJ=B(J, I)
AK=A(K1,I)
BK-B(Kl.l)
A(J, I)=AJ+CG*AK
B(J, I)=BJ+CG*BK
A(K1, I)=AK+CA*AJ

150 B(K1, I)=BK+CA*BJ
160 IF (JP1-KM1) 170,170,190
170 DO 180 I=JP1,KM1

AJ=A(J,I)
BJ=B(J,I)
AK-A(I.KI)
BK=B(I ,K1)
A(J, I)=AJ+CG*AK
B(J, I)=BJ+CG*BK
A (i ,KI)=AK+CA*AJ

180 8(1 ,K1)=BK+CA*BJ
190 AK=A(K1,K1)

BK=B(K1,K1)
A (K 1 , K 1 ) =AK+2 . *CA*A (J , K 1 ) +CA*CA*A (J , J)
B (K 1 , K 1 ) =BK+2 . *CA*B ( J , K 1 ) +C A*CA*B ( J , J)
A (J , J) =A (J , J) +2 . *CG*A (J , K 1 ) +CG*CG*AK
B (J , J) =B (J , J) +2 . *CG*B (J , K 1) +CG*CG*BK
A(J,K1)=0.
B(J,K1)=0.

: UPDATE EIGENVECTOR MATRIX

DO 200 1=1, N
XJ=X(I,J)
XK-X(I.Kl)
X(I,J)=XJ+CG*XK

200 X(l ,K1)=XK+CA*:XJ
210 CONTINUE

C
C
C

UPDATE EIGENVALUES

DO 220 1=1,N
IF (A(l , I) .GT.O.AND.Bd , I) .GT.O)GO TO 220
WRITE (IOUT,2020)
STOP

220 EIGV(I)-A(I.I)/B(I,I)
IF (IFPR.EQ.O)GO TO 230

C
C
C

WRITE (I OUT,2030)
WRITE (IOUT,2010) (EIGV (I),1 = 1,N)

CHECK FOR CONVERGENCE

230 DO 2kO 1=1, N
TOL=RTOL*D(I)
DIF=DABS(EIGV(I)-D(I))
IF (DIF.GT.TOL)GO TO 280
CONTINUE

NEW03860
NEW03870
NEW03880
NEW03890
NEW03900
NEW03910
NEW03920
NEW03930
NEW039'tO
NEW03950
NEW039&0
NEW03970
NEW03980
NEW03990
NEWOitOOO
NEWOU010
NEWOA020
NEWOU030
NEWO^O^O
NEWOU050
NEW04060
NEW01»070
NEWOi4080
NEW04090
NEWOitlOO
NEWOitl 10
NEW04120
NEWOi4l30
NEWO^tUO

NEWOi+160
NEWOi»170
NEW04180
NEW01»190
NEWOUOO
NEWOi*210
NEWOi*220
NEWOA230
NEW04240

NEWO**250
NEW01*260

NEW04300
NEWOA310
NEW04320
NEW04330

NEW04350
NEWOi*360
NEW01»370

NEW04390
NEWO^UOO
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C
C
C

CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D

EPS=RTOL**2
DO 250 J=1,NR
JJ=J+1
DO 250 K1=JJ,N
IF(DABS(A(J,K1)) .LT.1.D-30JGO TO 251
EPSA= (A (J , K1) *A (J , K1)) / (A (J , J) *A (K1 , K1))
GO TO 252

251 EPSA=0.0
252 EPSB=(B(J,K1)*B(J,K1))/(B(J, J)*B(K1 ,K1))

IF((EPSA.LT.EPS) .AND. (EPSB.LT.EPS))GO TO 250
GO TO 280

250 CONTINUE

NEWOUlO
NEWOU20
NEWOU30

NEWO't'+SO
NEWOU60
NEWO*tl*70
NEWOUU80

NEWOU500

NEWOi+520
NEWOJ*530

NEWOi*550
C
C
C

F I L L OUT BOTTOM TRIANGLE OF RESULTANT MATRICES 6 SCALE EIGENVECTORS

255 DO 260 1=1,N
DO 260 J=l,N
A(J, I)-A(I,J)

260 B(J, I)=B(I ,J)
DO 270 J=1,N
BB=DSQRT(B(J,J))
DO 270 K1=1,N

270 X(K1,J)-X(K1,J)/BB
C WRITE(IOUT,310)
C DO 300 1=1,N
C300 WRITE(IOUT,2010) (X(l ,J) ,J=1 ,N)
310 FORMAT(/1X,1 THE EIGENVECTORS ARE ')

NEWOJ*580
NEWOl»590
NEWO<t600
NEW04610
NEWOJ*620
NEW04630

NEW04660
NEWOi*670
NEW04680

NEW04700
NEW04710
NEW04720

NEW04750
C
C
C

NEW04770
NEWOU780
NEW04790
NEWOJtSOO

NEW04820

NEWO^SUO

RETURN

UPDATE THE 'D1 MATRIX AND START NEW SWEEP IF ALLOWED

280 DO 290 1=1,N

(F(NSWEEP.LT.NSMAX)GO TO AO
GO TO 255

2000 FORMAT (/1X,1 SWEEP NUMBER IN JACOB! = ',IM
2010 FORMAT (/1X.6E20.12)
2020 FORMAT (/1X,1 **** ERROR SOLUTION STOP / MATRICES NOT POSITIVE

^DEFINITE')
2030 FORMAT(/1X,' CURRENT EIGENVALUES IN JACOBI ARE ')

END

SUBROUTINE DAMP (N, E I GV.X.M.DAMRAT.C) NEWOl*900
IMPLICIT REAL*8(A-H,0-Z) NEWOAgiO
DOUBLE PRECISION X(70,70) ,T (70,70) ,M (70,70) ,C(70,70) ,EIGV(70) .DAMRNEW01.920
6AT(70) NEW04930

NEWO'jg'tO
DO 10 1=1,N NEW04950

NEW04860
NEWOU870
NEW01«880
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EIGV(I)=DSQRT(EIGV(I))
DO 10 J=1,N

10 C(I,J)=0.0

DO 20 I I = 1 , N
DA=2.*DAMRAT(I I) *E I GV (I I)
DO 20 1-1,N
DO 20 J=1,N

20 C (I,J)=C(I,J)+X(I,I I)*X (J,I I)*DA

DO 30 1=1,N
DO 30 J=1,N
T(l ,J)=0.0
DO 30 Kl-l.N

30 T(I,J)=T(I,J)+M(I,K1)*C(K1,J)

DO 40 1-1,N
DO 40 J=1,N
C(l ,J)=0.0
DO 40 K1=1,N

40 C(I,J)=C(I,J)+T(I ,K1)*M(K1,J)

C DO 50 1=1,N
C50 WRITE (2,120) (C(I,J) ,J=1,N)
120 FORMAT (6D14.4)

RETURN

END

NEW049&0
NEW04970
NEW04980
NEW04990
NEW05000
NEW05010
NEW05020
NEW05030

. NEW05040
NEW05050
NEW05060
NEW05070
NEW05080
NEW05090
NEW05100
NEW05HO
NEW05120
NEW05130
NEW05140
NEW05150
NEW05160
NEW05170
NEW05180
NEW05190
NEW05200
NEW05210
NEW05220
NEW05230
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THIS IS NEWMARKS SOLUTION

STIFFNESS — 0.5311000060+02

DAMPING 0.130999982D-01

FORCE 0.400000066D-02

FREQUENCY — 0.251300049D+02

TIME DEFLECTION AT L/2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.00500000

.01000000

.01500000

.02000000

.02500000

.03000000

.03500001

.04000001

.04500001

.05000001

.05500001

.06000001

.06500001

.07000001

.07500001

.08000001

.08500001

.09000001

.09500002

.10000002

.10500002

.11000002

.11500002

.12000002

.12500002

.13000002

.13500002

.14000002

.14500002

.15000002

.15500003

.16000003

.16500003

.17000003

.17500003

.18000003

.18500003

.19000003

.19500003

.20000003

.20500003

.21000003

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0
0
0
0

.07560742

.07411487

.07822479

.07755833

.07321689

.07439081

.07596175

.07030083

.06480695

.06403831

.05838368

.04628549

.03770042

.03044851

.01549482

.00155219

.01381828

.02866951

.04917751

.06667677

.08058453

.09807491

.11601054

.12788046

.13797468

.14964225

.15657816

.15730855

.15770900

.15621028

.14753221

.13531903

.12327482

.10672159

.08461688

.06275240

.04085973

.01462197

.01269540

.03673648

.06085743

.08652612

l

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
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IMPLICIT REAL*8(A-H,0-Z)

C THIS PROGRAM SOLVES FOR THE DEFLECTIONS OF A BEAM

C SUBJECT TO A FORCING FUNCTION AT THE MIDPOINT

C USING CENTRAL DIFFERENCE METHOD

DOUBLE PRECISION L.K1 ,K2,K (70,70) ,M(70,70) ,C(70,70) ,U(70) ,UTN(70)
£RT(70) ,C1 (70,70) ,C2(70,70) ,C3(70,70) ,Ck(JO) ,KEL(I»,J») , B (70) ,C5(7p)
&DUM(70) ,UT(70) ,MINV(70,70) ,C6 (70,70) ,X(70,70) ,EIGV(70) ,DAMRAT(70)
SUDDT(70)
IFPR=0

C******************** SET CONSTANT DATA ***********************

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

. **
**
**
**
**
**

L = LENGTH (IN)

C**
C** NUMEL = NUMBER OF ELEMENTS (MUST BE AN EVEN NUMBER)

C**
C** TS - TIME STEP; DELTA 'T' (SEC)

C** ROW = MASS PER UNIT LENGTH (Kl P*SEC**2/ IN**2)
C**
C** E = MODULUS OF ELASTICITY (KSI)
C**
C** XI = MOMENT OF INERTIA (IN**l»)
C**
C** AR =* AREA (IN**2)
C**
C** Kl = ROTATIONAL STIFFNESS AT END 1 (K*IN/RAD)
C**
C** K2 = ROTATIONAL STIFFNESS AT END 2 (K* IN/RAD)
C**
C** ZETA = DAMPING RATIO
C**
C** TT = TOTAL TIME FOR PROGRAM EXECUTION (SEC)

PO = MAGNITUDE OF THE FORCING FUNCTION (KIPS)

OMEGA = FREQUENCY OF THE FORCING FUNCTION (HZ)
c**
O'c*

C******ftV?******ft************ft*ft»W«ft******5't**V«**>'c********j'c**ft******

DATA L,NUMEL,TS,ROW/177.,12,0.00010,181-9527D-09/
DATA E,XI,AR/10000.,.325,.7363/
DATA K1,K2.TT/00.000,00.000,U.OO/
DATA PO,OMEGA,ZETA/0.00,0.000000000,O.OOOO/
ICQUNT=0
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10

30

kO
1*5
50

TIME=0.0

H=L/NUMEL

N=2*NUMEL-2

DO 10 1=1,N
DO 10 J=1,N
K(I,J)=0.0

K (1, 1) =3 .*E*X I * (4.*K 1+1 .) / ( (H**3) * (Kl + 1 .))
K(l,2) = (-l .)*3.*E*XI*(2.*K1 + 1 .)/((H**2)*(Kl + l.))
K(2,1)=K(1,2.)
K(2,2)=E*XI*(A.*Kl+3.)/(H*(KI + l.))

K (N-1 ,N-1)=3.*E*X I * (k.*K2+1 .) / ((H**3) * (K2+1.))
K (N-1 , N) =3. *E*X I * (2. *K2+1 .) / ((H**2) * (K2+1 .))
K(N,N-1)=K(N-1 ,N)
K (N, N) =E*X I * (k. *K2+3 •) / (H* (K2+1 .))

KEL
KEL
KEL
KEL
KEL
KEL
KEL
KEL

(1
(1
(1
(1
(2
(2
(2
(3

,1)
,2)
,3)
,4)
,2)
,3)
.*»)
,3)

S5

S

=

12.ftE*XI/(H**3)
6.*E*XI/(H**2)
(-l.)*.KEL(l,l)
KEL(1,2)
1».*E*XI/(H)
(-l.)*KEL(l,2)
KEL (2, 2) /2.
KEL(l.l)
KEL(2,3)
KEL (2, 2)

DO 30 1=1,k
DO 30 J=l,l+
IF (J.GT. I)KEL(J, I)=KEL(I,J)

DO 50 JK =l,NUMEL-2
Il=JK*2-2
JJ=I I
DO 1»5 I»1,U
DO 'tO J=l,U

K ( I I + I,JJ+J) = K(l I + I,JJ+J)+KEL(I ,.

CONTINUE
CONTINUE
CONTINUE

C THIS IS A TEST OF THE STIFFNESS MATRIX FOR THE STATIC LOAD CASE

C DO 61 I=1,N
C6l RT(I)=0.0
C RT(N/2) = .10
C CALL INVERT(K,C6,N)
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C
C
C
C62
C63
C
C
C65

C
C

DO 63 1=1,N
SUM=0.0
DO 62 J=1,N
SUM=SUM+C6(I ,J)*RT(J)
U(I)=SUM
DO 65 1=1,N
P R I N T * , ' D E F L E C T I O N AT NODE ' , ! , ' IS ' , U ( I )
WRITE(2,6M I ,U(I)
FORMAT (/IX,'STATIC SOLUTION... UC.I2, 1)
GO TO 500

'.D23-16)

66 DO 75 l-l.N
DO 70 J-l.N
M(l ,J)=0.0
C(l ,J)=0.0

70 CONTINUE
75 CONTINUE

DO 80 I=1,N-1,2
J=l + l
M(l,l)=78.
M(J,J)=2.*(H**2)

80 CONTINUE

DO 90 1=1,N
90 M(l , I)=M(I , l)*(ROW*H/78.)

C DO 100 1=1,N
IFPR=0
CALL JACOBI (K.M.N,IFPR.X.EIGV)

DO 100 1=1,N
100 DAMRAT(I)=ZETA

CALL DAMP(N,EIGV,X,M,DAMRAT,C)

ClOO C(I,I)=ZETA

PRINT STIFFNESS, MASS, AND DAMPING MATRICES
C
C WRITE(2,220)N/2
C DO 210 l=l,N
C210 WRITE (2, 2 1 5) (K(l, J) ,J=l,N/2)
C WRITE (2,22l)N/2
C DO 2ll l-l.N
C2ll WRITE (2,215) (K(I,J) ,J=N/2+l,N)
C WRITE(2,222)N/2
C DO 212 1=1, N
C212 WRITE (2, 2 15) (M(I,J) ,J=l,N/2)
C WRITE(2,223)N/2
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C DO 213 1=1,N
C213 WRITE (2,215) (M(l ,J) ,J=N/2+l,N)
C WRITE(2,22l»)N/2
C DO 2U 1 = 1,N
C2U WRITE (2,215) (C(l ,J) ,J=l,N/2)
C WRITE(2,225)N/2
C DO 216 1=1,N
C216 WRITE (2,215) (C(l ,J) ,J=N/2+l,N)

215 FORMAT(/1X,5DU.7)

220 FORMAT (/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF K ')
221 FORMAT(/1X,'THESE ARE THE LAST ',13,' COLUMNS OF K ')
222 FORMAT(/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF M ')
223 FORMAT(/1X,'THESE ARE THE LAST ',13,' COLUMNS OF M ')
22k FORMAT(/1X,'THESE ARE THE FIRST ',13,' COLUMNS OF C ')
225 FORMAT (/1X,'THESE ARE THE LAST ',13,' COLUMNS OF C ')

PRINT*,'IN START1

DO 300 1=1,N
300 RT(I)=0.0

: RT(N/2)=PO*(DSIN(OMEGA*TIME))

CALL INVERT(M,MINV,N)

PI-ACOS(-l.O)
DO 333 I=1,NUMEL
Z=PI*H*I/L
UT (2*1 ) = (. 1563/(1.+DUM1*2))*((PI/L*DCOS(Z)) + (DUM1*2*PI/L*DS
&))
UT(2*I -1) = (.1563/(1.+DUM1*2))* (DSIN(Z)+DUM1* (1.-DCOS (2*Z)))

333 CONTINUE
C DO 33^ 1=1,N
C334 PRINT*,'UTC,!,') = ',UT(I)

DO 302 I=1,N
SUM=0.0
DO 301 J-l.N

301 SUM=SUM+K(I ,J)*UT(J)*H.O)
302 DUM(I)=SUM

DO 306 1=1,N
SUM=0.0
DO 305 J-l.N

305 SUM=SUM+MINV(|, J)*DUM(J)
306 UDDT(I)=SUM

DO 303 1-1,N
303 UTN (I)=UT (I)+UDDT (I)*(TS**2) /2.
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C DO 302 1=1, N
C SUM=0.0
C DO 301 J=1,N
C301 SUM=SUM+MINV(I ,
C302 UTN(I)=SUM

C DO 303 1=1, N
C303 UTN(I)=UTN(I)*(TS**2)/(2.0)

DO 310 1=1, N
U(l)=0.0

C UT(I)-0.0
310 CONTINUE

PR I NT*, 'OUT START1

DO 320 1=1, N
DO 315 J=1,N
Cl(I.J) = M(I,J)/(TS**2) + C(.I,J)/(2.0*TS)
C2(I,J) = K(I,J) - (2.*M(I,J)/(TS**2))
C3(I,J) = (M(I,J)/(TS**2)) - (C(I,J)/(2.*TS))

315 CONTINUE
320 CONTINUE

CALL INVERT(C1,C6,N)

C DO 122 1=1, N
C122 WRITE(2,123) I,C6(I, I)
123 FORMAT (/ IX, 'THIS ISC6(',I2,') ',023.1 6)

C WRITE (2, 176)
C WRITE (2, 177)
130 DO kkO I=1,N

SUM=0.0
DO MO J=1,N

C W R I T E ( 2 , 1 3 0 T I M E , C 2 ( I , J ) ,UT(I)
1*10 SUM=SUM+C2(I ,J)*UT(J)
MO CMl)=SUM
131 FORMAT( /1X, 'T IME ' ,F5 .3 , ' C2 ' ,018 .10 , ' UT ' ,018.10)

DO 1+1*2 I=1,N
SUM=0.0
DO Itll J=1,N

It 1 1 SUM=SUM+C3 ( I , J) *UTN (J)
1*1*2 C5(I)=SUM

RT (N/2) =PO* (OS I N (OMEGA*T I ME) )

DO 11*0 1 = 1, N
11*0 B(I)=RT(I)-CJ*(I)-C5(D

C DO ^k2 1=1, N
C1U2 WRITE(2.11»9) I,B(I)
11*9 FORMAT(/1X,'THIS IS B(',I2,') = ',023-16)
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c
c

511
542

C
c
c
c
c
c
C199
C199
c

c
c
c
c
C199
c

141
c
c

143

150

175
176
1 1 "71/7

500

WRITE (2, 176)
WRITE (2, 177)
DO 542 1=1, N
SUM=0.0
DO 511 J=1,N
SUM=SUM+C6(I ,J)*B(J)
U(I)=SUM

ICOUNT=ICOUNT+1
TIME=TIME+TS

SUM=0.0
DO 199 1=1,7,2
X=l
D 1 = ( (E*X 1 / (ROW* (L**4) ) ) **0 .5) * (X**2) * (9 .869604404)
D2= ( (DS 1 N ( (X) *3 . 1 4592654/2 .0) ) **2)
D3=1.0-(DCOS(D1*TIME))
SUM=SUM+D2*D3/ (D 1 **2)
SUM=SUM+D3/(D1**2)
EXACT= (2 . *PO/ (ROW*L) ) *SUM

D 1=2 . *PO* (DS 1 N (OMEGA*TI ME) ) * (L**3) / ( (3 . 1 4592654*̂ 4) *E*X 1 )
SUM=0.0
DO 199 I=1,NUMEL-1,2
X=l
SUM=SUM+ (1 ./ ( (X**4) -0 . 25) )
EXACT=SUM*D1

LINE=3
IF(.ICOUNT.EQ.50)GO TO 141
GO TO 143
WRITE (2, 175)TIME,U(N/2) .LINE
D 1 F- (U (N/2) -EXACT) /EXACT
IF (DABS (D IF) .LE. 0.15) WRITE (2,177)
ICOUNT-0

DO 150 1=1, N
UTN(I)=UT(I)
UT ( 1 ) =U ( 1 )

IF (TIME.GT.TT)GO TO 500

GO TO 130
FORMAT (F 10.8, IX, F 10.8, 1 X, 1 1)
FORMAT(/1X,' TIME DEFLECTION AT L/21 , 15X, ' EXACT1)

c __ _ 1 \

STOP
END

SUBROUTINE INVERT (AO, A, N)
DOUBLE PRECISION A (70,70) ,AO (70, 70)

DO 1 1=1, N
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CEN03260
CEN03270
CEN03280
CEN03290
CEN03300
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DO 1 J=1,N
1 A(I,J)=AO(I,J)

NP=N+1
A(1,NP)=1.0
DO 10 1=2,N

10 A(I,NP)=0.0

DO UO J=1,N
DO 20 LX=1,N

20 A(NP,LX)=A(1,LX+1)/A(1,1)
DO 30 KX=2,N
DO 30 LX=1 ,N

30 A(KX-1,LX)=A(KX,LX+1)-A (KX,1)*A (NP.LX)
DO 1+0 LX=1 ,N

kO A(N,LX)=A(NP,LX)

RETURN
END

SUBROUTINE JACOBI(K.M.N,IFPR.X,EIGV)
C SUBROUTINE JACOBI

IMPLICIT REAL*8 (A-H.O-Z)
DOUBLE PRECISION A(70,70) ,B(70,70) ,X(70,70) ,EIGV(70) ,D (70)
6K(70,70) ,M(70,70)

IFPR=0
C COMMON/K.M/
C WRITE (2,105D
C1051 FORMAT (/1X,1 INPUT DATA ')
C READ(1,*)N.IFPR
C WRITE(2,1001)N,IFPR
C DO 1010 1=1,N
C READd,*) (A (I ,J) ,J=1,N)
C WRITE (2, 1110) (A(l ,J) ,J=1,N)
C1010 CONTINUE
C DO 1020 1=1,N
C READO,*) (B(I,J) ,J=1,N)
C WRITE (2, 1110) (B(I,J) ,J=1,N)
C1020 CONTINUE
C1001 FORMAT(2I10)
C1110 FORMAT(8F10.1*)

DO 2 1=1,N
DO 1 J=1,N
A(I,J)=K (I ,J)
B(I,J)=M(I,J)

1 CONTINUE
2 CONTINUE

NSMAX=15
C WRITE (2,1980)
1980 FORMAT (/IX,' EIGENVALUES ')

RTOL=1.D-12
IOUT=2
DO 10 1=1,N

C PRINT*,'FLAG '.I ,' A = ',A(I,1)

CEN03310
CEN03320
CEN03330
CEN0331+0
CEN03350
CEN033&0
CEN03370
CEN03380
CEN03390
CEN03400
CEN03410
CEN03420
CEN03430
CEN03440
CEN031+50
CEN03U60
CEN03'»70
CEN03l*80
CEN03490
CEN03500
CEN03510
CEN03520
CEN03530

CEN03550
CEN03560
CEN03570
CEN03580
CEN03590
CEN03600
CEN03&10
CEN03620
CEN03&30

CEN03650
CEN03660
CEN03&70
CEN03680
CEN03&90
CEN03700
CEN03710
CEN03720
CEN03730

IF (A (I, I) .GT.O.AND.B(I.I) .GT.O.)GO
B =
TO

CEN03750
CEN03760
CEN03770
CEN03780
CEN03790
CEN03800
CEN03810
CEN03820
CEN03830
CEN038UO
CEN03850
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10

20
30

C
C
C

WRITE (I OUT, 2020)
STOP
D(I)=A(I,I)/B(I,I)
EIGV(I)=D(I)
DO 30 1=1, N
DO 20 J=1,N
X(I,J)=0.
X(l,l)-1.0
(F(N.EQ.I)RETURN

I N I T I A L I Z E SWEEP COUNTER AND EIGEN ITERATION

NSWEEP=0
NR=N-1
NSWEEP=NSWEEP+1
IF (IFPR.EQ.l)WRITE (I OUT, 2000) NSWEEP

C
C
C

PRI

CHECK

NT*

I F

EPS=(0
DO
JJ=
DO

210
J+l
210

SWEEP NUMBER. ,NSWEEP

PRESENT OFF DIAGONAL ELEMENT IS TOO LARGE

,01**NSWEEP)**2
J=1,NR

. l.D-20)GO TO 211
,K1))/(A(J,J)*A(K1 Kl))

K1=JJ,N
IF (DABS(A(J,K1)) .LT,
EPTOLA=(A(J,K1)*A(J,
GO TO 212

211 EPTOLA=0.0
212 EPTOLB- (B (J . K1) *B (J, K1)) / (B (J , J) *B (K1 . K1))

IF ((EPTOLA.LT.EPS).AND. (EPTOLB.LT.EPS))GO TO
AKK=A(K1,K1)*B(J,K1)-B(K1,K1)*A(J,K1)
A J J=A (J , J) *B (J, K1) -B (J , J) *A (J , K1)
AB=A (J, J) *B (K 1 , K1) -A (K 1, K1) *B (J , J)
CHECK=(AB*AB+4.*AKK*AJJ)/A.

: PRINT*,'THIS IS CHECK... '.CHECK
IF (CHECK)50,60,60

50 WRITE (IOUT,2020)
STOP

60 SQCH=DSQRT (CHECK)
Dl=AB/2.+SQCH
D2=AB/2.-SQCH
DEN=D1
IF (DABS (D2) .GT.DABS(D1))DEN=D2
IF (DEN)80,70,80

70 CA=0.
CG-(-l.)*A(J,Kl)/A(Kl,Kl)
GO TO 90

80 CA=AKK/DEN
CG=(-1.)*AJJ/DEN

90 I F(N-2) 100,190,100
100 JP1=J+1

JM1=J-1
KP1=K1+1
KM1=K1-1
IF(JMl-l) 130,110,110

210

CEN03860
CEN03870
CEN03880
CEN03890
CEN03900
CEN03910
CEN03920
CEN03930
CEN03940
CEN03950
CEN03960
CEN03970
CEN03980
CEN03990
CEN04000
CEN04010
CENOU020
CENOU030
CENOUOAO
CEN01»050
CENOU060
CENOU070
CEN04080
CENOU090
CENOU100
CEN04110
CENOU120
CENOU130

CENOU150
CENOU160
CENOU170
CENOA180
CEN04190
CENOU200
CENOA210
CEN04220
CENOA230

CENOA260
CENOA270
CENOA280
CENOA290
CENOl*300
CEN04310
CEN04320
CEN04330

CEN04350
CEN04360
CENOA370
CEN04380
CEN04390
CENO^AOO
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1=1
J)
J)
Kl)

110 DO 120 1=1,JM1
AJ=A(I
BJ=B(I
AK=A(I
BK=B(I
A (I ,J)=AJ+CG*AK
B(l ,J)=BJ+CG*BK
A (I ,K1)-AK+CA*AJ

120 B(l,Kl)=BK+CAftBJ
130 IF (KP1-N) 11*0,11*0,160
11*0 DO 150 I=KP1,N

AJ=A(J, I)
BJ=B(J,I)
AK=A(K1, I)
BK=B(K1, I)
A(J, I)=AJ+CG*AK
B(J, I)=BJ+CG*BK
A(K1, I)=AK+CA*AJ

150 B(K1, I)=BK+CA*BJ
160 IF(JP1-KM1)170,170,190
170 DO 180 -I-JP1.KM1

AJ-A(J.I)
BJ=B(J,I)
AK=A(I ,K1)
BK-B(I.Kl)
A(J, I)=AJ+CG*AK
B(J, I)=BJ+CG*BK
A (I ,K1)=AK+CA*AJ

180 B(l ,K1)=BK+CA*BJ
190 AK=A(K1,K1)

BK=B(K1,K1)
A(K1,K1)=AK+2.*CA*A (J,K1)+CA*CA*A (J,J)
B(K1,K1)=BK+2.*CA*B(J,K1)+CA*CA*B(J,J)
A (J , J) =A (J, J) +2. *CGAA (J , K1) +CG*CG*AK
B (J , J) =B (J , J) +2. *CG*B (J , K1) +CG*CG*BK
A(J,K1)=0.
B(J,K1)=0.

C
C UPDATE EIGENVECTOR MATRIX
C

DO 200 1=1,N
XJ=X(I ,J)
XK=X(I,K1)
X(l ,J)=XJ+CG*XK

200 X(l,Kl)=XK+CAftXJ
210 CONTINUE

C
C UPDATE EIGENVALUES
C

DO 220 1=1,N
IF(A(I,I) .GT.O.AND.Bd, I) .GT.O)GO TO 220
WRITE (I OUT,2020)
STOP

220 EIGV(I)=A(I,I)/B(I, I)
IF(IFPR.EQ.O)GO TO 230

CEN01*1»10
CENOU20
CENOU430

CENOl*500.
CENOl*510
CENOl»520
CENOl*530

CENOl»550
CENOl*560
CENOl»570
CENOU580
CEN04590
CEN04600
CEN04610
CENOU620

CENOU660
CEN04670

CEN04700
CEN01*710
CEN04720
CEN04730

CENO*t750
CEN04760
CEN04770

CEN04790
CEN04800
CEN04810
CEN04820
CEN04830
CENOU840
CEN01»850
CEN01+860
CEN04870
CEN01*880
CENOW90
CEN01»900
CENOi»910
CEN01+920

CEN04950
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C
C
C

WRITE (I OUT, 2030)
WRITE (I OUT, 20 10) (EIGV(I)

CHECK FOR CONVERGENCE

1-1,N)

230 DO 2*»0 1-1, N
TOL=RTOL*D(I)
DIF«DABS(EIGV(I)-D(I))
IF (DIF.GT.TOL)GO TO 280

2UO CONTINUE
C
C
C

CHECK ALL OFF DIAG ELEMENTS TO SEE IF ANOTHER SWEEP IS REQ'D
PRINT*,' RTOL ',RTOL
EPS=RTOL**2
DO 250 J=1,NR
JJ=J+1
DO 250 K1=JJ,N
IF(DABS(A(J,K1)) .LT.1.D-30)GO TO 251
EPSA= (A (J , K1) *A (J , K1)) / (A (J, J) *A (K 1, K1))
GO TO 252

251 EPSA=0.0
: PRINT*,1 EPSA '.EPSA,1 EPS '.EPS
252 EPSB* (B (J , K1) *B (J , K1)) / (B (J , J) *B (K 1, K1))
: PRINT*,1 EPSB '.EPSB,1 EPS ',EPS

IF((EPSA.LT.EPS).AND. (EPSB.LT.EPS))GO TO 250
GO TO 280

250 CONTINUE
C
C
C

F I L L OUT BOTTOM TRIANGLE OF RESULTANT MATRICES 6 SCALE EIGENVECTORS

255 DO 260 1=1,N
DO 260 J=1,N
A(J,I)=A(I,J)

260 B(J,I)=B(I,J)
DO 270 J=1,N
BB=DSQRT(B(J,J))
DO 270 K1=1,N

270 X(K1,J)=X(K1,J)/BB
C WRITE(IOUT,310)
C DO 300 1=1,N
C300 WRITE (IOUT,2010) (X(I,J) ,J=1,N)
310 FORMAT(/1X,' THE EIGENVECTORS ARE

C
C
C

RETURN

UPDATE THE 'D1 MATRIX AND START NEW SWEEP IF ALLOWED

280 DO 290 1=1,N

IF(NSWEEP.LT.NSMAX)GO TO kO
GO TO 255

2000 FORMAT (/IX,' SWEEP NUMBER IN JACOB I = ',Ik)

CENO<t960
CEN04970
CENOl»980
CENOl*990
CEN05000
CEN05010
CEN05020
CEN05030
CEN05040
CEN05050
CEN05060
CEN05070
CEN05080
CEN05090
CEN05100
CEN051 10
CEN05120
CEN05130
CEN05140
CEN05150
CEN05160
CEN05170
CEN05180
CEN05190
CEN05200
CEN05210
CEN05220
CEN05230
CEN052l»0
CEN05250
CEN05260
CEN05270
CEN05280
CEN05290
CEN05300
CEN05310
CEN05320
CEN05330
CEN053'»0
CEN05350
CEN053&0
CEN05370
CEN05380
CEN05390
CEN05UOO
CEN05MO
CEN05A20
CEN05U30

CEN05U60
CEN05'*70
CENOS'tSO
CEN05U90
CEN05500
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2010 FORMAT (/1X.6E20.12)
2020 FORMAT (/IX,1 **** ERROR SOLUTION STOP / MATRICES NOT POSITIVE

SDEFINITE 1)
2030 FORMAT(/1X,' CURRENT EIGENVALUES IN JACOBI ARE ')

END

10

20

30

C
C50

SUBROUTINE DAMP (N,E I GV, X,M,DAMRAT,C)
IMPLICIT REAL*8(A-H,0-Z)
DOUBLE PRECISION X (70,70) ,T (70, 70) ,M (70,70) ,C (70, 70) , E

&AT (70)

DO 10 1=1, N
EIGV(I)-DSQRT(EIGV(I))
DO 10 J=1,N
C(I,J)=0.0

DO 20 I 1-1, N
DA=2.*DAMRAT(I I)*EIGV(I I)
DO 20 l-l.N
DO 20 J-l.N
C(I,J)-C(I,J)+X(I,II)*X(J,M)*DA

DO 30 1=1, N
DO 30 J=1,N
T(I.J)-0.0
DO 30 Kl-l.N
T(l ,J)=T(I ,J) ,K1)*C(K1,J)

DO UO 1=1, N
DO 1*0 J=1,N
C(t,J)-0.0
DO kO K1=1,N
C ( I , J) -C ( I , J) +T ( I , K 1 ) *M (K 1 , J)

DO 50 1=1, N
WRITE (2, 120) (C(l ,J) ,J=1,N)

120 FORMAT (60 1**.!
RETURN

END

CEN05510
CEN05520
CEN05530
CENOSS'tO
CEN05550
CEN055&0
CEN05570
CEN05580

GV(70) .DAMRCEN05590
CEN05600
CEN05&10
CEN05620
CEN05&30
CEN05640
CEN05&50
CEN05660
CEN05670
CEN05680
CEN05690
CEN05700
CEN05710
CEN05720
CEN05730
CEN05740
CEN05750
CEN057&0
CEN05770
CEN05780
CEN05790
CEN05800
CEN05810
CEN05820
CEN05830

CEN05850
CEN05860
CEN05870
CEN05880
CEN05890
CEN05900
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THIS IS CENTRAL DIFFERENCE SOLUTION

STIFFNESS — 0.531100006D+02

DAMPING 0.130999982D-01

FORCE 0.400000066D-02

FREQUENCY — 0.2513000490+02

TIME DEFLECTION AT L/2

0.00500000
0.01000000
0.01500000
0.02000000
0.02500000
0.03000000
0.03500001
0.04000001
0.04500001
0.05000001
0.05500001
0.06000001
0.06500001
0.07000001
0.07500001
0.08000001
0.08500001
0.09000001
0.09500002

10000002
10500002
11000002
11500002
12000002
,12500002
13000002
,13500002
14000002

0.14500002
0.15000002
15500003
16000003

0.16500003
0.17000003

17500003
18000003
18500003
19000003
19500003

0.20000003
0.20500003
0.21000003

0.
0.
0.
0.
0.
0.
0.
0,
0.

0,
0.

0.
0.
0.
0.
0.

0.07560742 1
0.07411487 1
0.07822479 1
0.07755833 1
0.07321689 1
0.07439081 1
0.07596175 1
0.07030083 1
0.06480695 1
0.06403831 1
0.05838368 1
0.04628549 1
0.03770042 1
0.03044851
0.01549482
-0.00155219
-0.01381828
-0.02866951
-0.04917751
-0.06667677
-0.08058453
-0.09807491
-0.11601054
-0.12788046
-0.13797468
-0.14964225 1
-0.15657816 1
-0.15730855 1
-0.15770900 1
-0.15621028 1
-0.14753221 1
-0.13531903 1
-0.12327482 1
-0.10672159 1
-0.08461688 1
-0.06275240 l
-0.04085973
-0.01462197
0.01269540
0.03673648
0.06085743
0.08652612
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