523 research outputs found

    Traditional Wooden Buildings in China

    Get PDF
    Chinese ancient architecture, with its long history, unique systematic features and wide-spread employment as well as its abundant heritages, is a valuable legacy of the whole world. Due to the particularity of the material and structure of Chinese ancient architecture, relatively research results are mostly published in Chinese, which limits international communication. On account of the studies carried out in Nanjing Forestry University and many other universities and teams, this chapter emphatically introduces the development, structural evolution and preservation of traditional Chinese wooden structure; research status focuses on material properties, decay pattern, anti-seismic performance and corresponding conservation and reinforcement technologies of the main load-bearing members in traditional Chinese wooden structure

    Predicting financial extremes based on weighted visual graph of major stock indices

    Get PDF
    Understanding and predicting extreme turning points in the financial market, such as financial bubbles and crashes, has attracted much attention in recent years. Experimental observations of the superexponential increase of prices before crashes indicate the predictability of financial extremes. In this study, we aim to forecast extreme events in the stock market using 19-year time-series data (January 2000– December 2018) of the financial market, covering 12 kinds of worldwide stock indices. In addition, we propose an extremes indicator through the network, which is constructed from the price time series using a weighted visual graph algorithm. Experimental results on 12 stock indices show that the proposed indicators can predict financial extremes very well

    Improving mobility of silicon metal-oxide-semiconductor devices for quantum dots by high vacuum activation annealing

    Full text link
    To improve mobility of fabricated silicon metal-oxide-semiconductor (MOS) quantum devices, forming gas annealing is a common method used to mitigate the effects of disorder at the Si/SiO2 interface. However, the importance of activation annealing is usually ignored. Here, we show that a high vacuum environment for implantation activation is beneficial for improving mobility compared to nitrogen atmosphere. Low-temperature transport measurements of Hall bars show that peak mobility can be improved by a factor of two, reaching 1.5 m^2/(Vs) using high vacuum annealing during implantation activation. Moreover, the charge stability diagram of a single quantum dot is mapped, with no visible disturbance caused by disorder, suggesting possibility of fabricating high-quality quantum dots on commercial wafers. Our results may provide valuable insights into device optimization in silicon-based quantum computing.Comment: 13 pages, 4 figure

    Theory of d+idd + id Second-Order Topological Superconductors

    Full text link
    Topological superconductors are a class of unconventional superconducting materials featuring sub-gap zero-energy Majorana bound modes that hold promise as a building block for topological quantum computing. In this work, we study the realization of second-order topology that defines anomalous gapless boundary modes in a two-orbital superconductor with spin-orbital couplings. We reveal a time-reversal symmetry-breaking second-order topological superconducting phase with d+idd+id-wave orbital-dependent paring without the need for the external magnetic field. Remarkably, this orbital-active dd-wave paring gives rise to anomalous zero-energy Majorana corner modes, which is in contrast to conventional chiral dd-wave pairing, accommodating one-dimensional Majorana edge modes. Our work not only reveals a unique mechanism of time-reversal symmetry breaking second-order topological superconductors but also bridges the gap between second-order topology and orbital-dependent pairings.Comment: 5+ pages, 5 figure

    Traffic experiment reveals the nature of car-following

    Get PDF
    As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of disturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.Comment: 24 pages, 7 figure
    • …
    corecore