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Understanding and predicting extreme turning points in the �nancial market, such as �nancial bubbles and crashes, has attracted
much attention in recent years. Experimental observations of the superexponential increase of prices before crashes indicate the
predictability of �nancial extremes. In this study, we aim to forecast extreme events in the stock market using 19-year time-series
data (January 2000–December 2018) of the �nancial market, covering 12 kinds of worldwide stock indices. In addition, we
propose an extremes indicator through the network, which is constructed from the price time series using a weighted visual graph
algorithm. Experimental results on 12 stock indices show that the proposed indicators can predict �nancial extremes very well.

1. Introduction

�e stock market is an important part of global �nancial
markets. Since entering the stock market is relatively easy
and the returns are considerable, the stock market has be-
come a major market for investment activities of ordinary
investors. However, compared with the capital markets of
developed countries such as the United States, emerging
stock markets, as represented by China, are more volatile,
and their system risks are much greater, due to the short
establishment time and imperfect institutional system.
�erefore, modelling the stock market and making accurate
predictions are very useful for both investors and regulatory
authorities to manage the system risk [1]. �e �nancial
extremes, such as bubbles, crashes, and rebounds, play a
crucially important role in research of the stock market, and
prediction of �nancial extremes using stockmarket indices is
also a hot topic in the research of �nancial markets [2–4].

In the last decade, there has been a growing body of
literatures addressing the utilization of complex network
methods for the characterization of dynamical systems based
on time series. �ere are at least three main class approaches

to transform time series to network representations [5], such
as proximity networks [6], transition networks [7], and
visibility graphs [8]. �e connectivity of proximity networks
is determined by the mutual statistical similarity or metric
proximity between di�erent segments of a time series. Zhang
and Small introduced a method to convert the pseudo-
periodic time series into networks, in which cycles in the
time series are considered nodes, and the edges are de-
termined by the strength of temporal correlation between
cycles [6]. Xu et al. proposed another method in which
phase-space points are considered nodes in the network, and
each node links to its closest k neighbors to form a complex
network [9]. To produce an ordinal partition transition
network, the time series is symbolized using ordinal pat-
terns. �e ordinal patterns are used as the nodes of the
network, and directed edges are based on temporal suc-
cession of the ordinal patterns [10]. �e visibility graph
algorithm was proposed by Lacasa in 2008, in which nodes
correspond to the data points of the time series, and an edge
is assigned to connect two nodes if they can see each other.
�e visibility graph algorithm can map all types of time
series into networks, by converting a periodic series into a
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regular graph, a random series into a random graph, and a
fractal sequence into a scale-free network [8, 11–14].

Based on the visibility framework, a horizontal visibility
algorithm [15] and a limited penetrable visibility algorithm
were generated [16]. Stephen et al. extracted all the segments
in a time series with a predefined window size and mapped
each segment to a visibility graph.-e successively occurring
visibility graphs are linked in turn. -e weights of links
reflect the transfer behaviors of the distinguishable states
[17]. In addition, Yan and Serooskerken proposed an ab-
solute invisibility graph, which is just the opposite of the
visibility algorithm, to predict the trough points in the stock
prices [18]. For the low complexity and good geometric
properties, the visibility graph has been widely applied in
many kinds of time series, including turbulence [19], sun-
spot series [20], electrocardiograms (ECGs) [21], the Con-
struction Cost Index (CCI) [22, 23], and financial market
[24–28].

Based on the previous achievements, we constructed a
weighted visual graph (including the visibility graph and
absolute invisibility graph), in which the edge weight is
defined as the combination of the price difference and the
time interval of the corresponding nodes. We then proposed
a new predictive indicator of the financial extremes based on
the weighted visual graph. -e extremes of the financial
market are defined as the peak (or trough) points, which are
the maximum (or minimum) index among a period of stock
prices in this paper. Experiments on 12 indices show the
strong predictive power of the proposed indicators.

-e rest of this paper is organized as follows. In Section
2, we describe the data used in this work and propose the
indicators of financial extremes. In Section 3, we show the
experimental results on 12 stock indices. Conclusions are
drawn in Section 4.

2. Methodology and Data Description

2.1. Data Description. A series of stock market indices can
reflect the overall movement of the markets. We collected 12
major stock market indices from Yahoo Finance (https://
finance.yahoo.com) and used the daily closing price series
for approximately 19 years, from January 2000 to December
2018. During this period, there were about 4500 trading days
(the accurate trading days may be slightly different between
the indices). -e extremes (peak or trough points) of the
financial market are defined as the maximum (or minimum)
index within a period of stocks. Table 1 shows the in-
formation and the basic statistic of the 12 stock indices,
where a� 45 and b� 131 (these variables will be explained
later). In this work, we propose an indicator of the extremes
on these datasets.

2.2.ProblemDefinition. In this study, we define the extremes
of the financial market as the peak (or trough) points that are
the maximum (or minimum) index within a period of
stocks. In this case, we aim to find an indicator that has
strong predictive power for the peak (or trough) points.
Mathematically, for a given stock price time series (t, y),

where t is the time variable and y the price value at t, the
point at time t is a peak (or trough) point if yt is the
maximum (or minimum) price over the period of
(t − b, t + a), where a and b are the number of trading days
after (a) and before (b) the current day, respectively. As in
the previous work [18], we chose b � 131 and a � 45, which
denote the number of trading days in 6 months and 2
months, respectively. In total, the numbers of peak and
trough points for each stock index in the considered period
are illustrated in Table 1. Figure 1 illustrates the peak and
trough points of the Shanghai Stock Exchange (SSE) index.
Our goal in this work is to predict whether the peak (or
trough) points will appear in the next several days.

2.3. Construction of Visibility Graph and Absolute Invisibility
Graph

2.3.1. Visibility Graph. In this work, we find the indicator of
extremes from the network perspective, but first we briefly
introduce the visibility graph algorithm proposed by Lacasa
et al., which is the most commonly used method to convert a
time series into a network [8]. For a series (t, y), a visible
edge exists between two nodes (ti, yi) and (tj, yj), if any
node (tk, yk) located between them satisfies

yk <yi +
tk − ti

tj − ti

yj − yi , ∀i< k< j. (1)

Figure 2(a) is a schematic of the visibility graph that was
converted from the series of SSE index’s daily closing prices
in January 2015. A natural number is used to mark the
trading days. -e points and lines between them constitute
the visibility graph. -e nodes correspond to series data in
the same order and an edge connects two nodes if one can
see the other (visibility between them). Taking points 10 and
16 of Figure 2(a) as the example with which to explain the
concept of “visibility,” between points 10 and 16 there are
five points (11 to 15) that are all under the red line from point
10 to 16. A link (visibility) exists between nodes 10 and 16.
As the definition of the visibility graph, the node with a large
price would be more likely to have more links, and this
would be the basic method with which to predict the peak
points.

2.3.2. Absolute Invisibility Graph. -e absolute invisibility
graph algorithm [18] is just the opposite of the visibility
algorithm. For a series (t, y), an absolute invisibility edge
exists between two nodes (ti, yi) and (tj, yj), if any node
(tk, yk) located between them satisfies

yk >yi +
tk − ti

tj − ti

yj − yi , ∀i< k< j. (2)

Figure 2(b) is a schematic of the absolute invisibility
graph. Taking points 12 and 16 of Figure 2(b) as an example
with which to explain the concept of “absolute invisibility,”
between points 12 and 16 there are three points (13, 14, and
15) that are all above the line from points 12 to 16.-erefore,
every point located in 12 and 16 can obstruct the visibility
between 12 and 16, and a link (absolute invisibility) exists. As
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the definition of the absolute invisibility graph, the node
with a low price would bemore likely to havemore links, and
this would be the basic method with which to predict the
trough points.

Based on the visibility graph and absolute invisibility
graph algorithm, Yan and Serooskerken put forward an
indicator to predict the extreme value in the time series [18].
-emethod in their article shows there will be more possible
appearances of an extreme value if the degree of the cor-
responding node is much higher than the others.

2.4. Indicator of Extremes. It should be noted that the above
methods consider only the edge between two nodes, which
misses a lot of detailed information of the original series.
Taking the visibility graph as an example (Figure 2(a)), the
link between points 11 and 12 and that between points 11
and 13 have no differences in the original visibility graph.
However, the difference of the variation (|y12 − y11|

versus|y13 − y11|) is very significant, which is also an im-
portant factor related to the extremes.-erefore, we propose
a weighted visual graph (WVG), which considers the

variation between the two points based on the original
visibility graph or absolute invisibility graph. As shown in
Figure 2(c), the dotted line represents the horizontal sight
line, and the angle between the solid line and the dotted line
is defined as the depression angle. For a pair of nodes that
satisfy the visual condition of the visibility graph (or absolute
invisibility graph), the weight of the edge between them is
defined as the tangent value of the depression angle:

wij � tan αij �
yj − yi

tj − ti

. (3)

Compared with the original visibility graph (or absolute
invisibility graph) algorithm, the WVG algorithm considers
more details such as the time interval and price variation
between two points in the time series. It should be noted
that, if the price increased, the depression angle is positive,
leading to positive weight, and vice versa. Among the entire
time series, we use the observation window with S days of
data to construct the weighted visual graph. For each graph
converted from the corresponding time window, we define
Pi

w and Ti
w for the weighted visual graph as the indicator

Table 1: Index data of 12 stock indices studied in this paper.

Symbol Name Number of
trading days

Average
price

Number of
peaks

Number of
troughs

SSE SSE COMPOSITE INDEX 4363 2467.84 13 15
BVSP IBOVESPA 4786 44825.85 23 15
FCHI CAC 40 4886 4384.60 17 17
HIS HANG SENG INDEX 4763 19237.15 16 15
IPSA IPSA SANTIAGO DE CHILE 4306 3297.14 14 13
JKSE JAKARTA COMPOSITE INDEX 4772 2830.74 19 10
MERV MERVAL 4769 5788.48 24 10
MXX IPC MEXICO 4836 28008.27 20 14
N100 EURONEXT 100 4886 792.40 19 15
N225 NIKKEI 225 4785 13855.42 20 16
RUT RUSSELL 2000 4778 821.29 18 14
IXIC NASDAQ Composite 4778 3232.92 16 13
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Figure 1: Peak (red) and trough (green) points of the Shanghai Stock Exchange (SSE) index. Blue curve represents the price index (a � 45
and b � 131).
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with which to predict the appearance of the peak and trough
points in the following days, respectively. To predict the peak
points, we use the weighted visibility graph, and Piw is de-
�ned as

Piw �
∑i− 1j�i− Swij
S − 1

. (4)

To predict the trough points, we use the weighted ab-
solute invisibility graph, and Tiw is de�ned as

Tiw � −
∑i− 1j�i− Swij
S − 1

, (5)

where i represents the rightmost point in the observing
window and S is the length of the observation window.

For the weighted visual graph, the structure of each node
is very sensitive to the neighborhood values. A�ected by the
neighbors, the indicators based on the visibility graph and
absolute invisibility graph ¢uctuate frequently. For example,
according to Figures 2(a) and 2(b), it is obvious that, for the
points 16 and 17, although these two days’ prices are similar,
the corresponding indicators are very di�erent. To reduce
the impact of neighbor points, we consider the observations’
neighbor nodes as a whole (as shown in Figure 2(d)), and the
accumulated weighted indicators can be calculated as
follows:

Picw � ∑
i

k�i− n+1

∑k− 1j�k− Swkj/(S − 1)( )
n

, (6)

Ticw � − ∑
i

k�i− n+1

∑k− 1j�k− Swkj/(S − 1)( )
n

, (7)

where n decides the size of the considered accumulated
neighbors.

3. Results and Discussions

3.1. Comparison Methods. Indicators that are based on the
degree (D) and accumulated degree (AD) of the visibility
graph and absolute invisibility graph are applied as the
comparison methods. �e indicators used in this work are
summarized in Table 2.

3.2.Metrics. We set the observation window with a length of
262 (S� 262) trading days, and its moving step equals 1 day.
For each observation window, we calculate the indicators
listed in Table 2, and we expect that the peak point (or trough
point) would appear in the following 45 (a� 45) days if the
indicator is signi�cant. �erefore, we choose di�erent
thresholds for the indicators to observe the predictions.
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Figure 2: Schematic of four di�erent algorithms: (a) visibility algorithm; (b) absolute invisibility algorithm; (c) weight based on angle; (d)
accumulated neighbors.
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Once the indicator value is above the threshold, we believe
that there will be a peak (or a trough) point within 45 days
after the rightmost point of the corresponding window. To
test the performance of the proposed indicators, we calculate
the precision (P) and recall (R) separately. Supposing thatNe
is the number of the extremes (peak or trough points) in the
total time series, Np is the number of the prediction ex-
tremes in which the indicator values are larger than the
threshold and Ntp is the number of the prediction extremes,
which are the real extremes. Precision can be obtained
through precision � (Ntp/Np) and recall through
recall � (Ntp/Ne). Large precision means the high accuracy
of the method and large recall means more extremes are
predicted. While precision and recall are two competitive
measures of performance, we use F1 score as the major
measurement. F1 score is defined as follows:

F1 �
2∗ precision∗ recall
precision + recall

. (8)

3.3. Experimental Results. First, we take the SSE index case as
an example to illustrate the prediction process. For each ob-
servation time window, we can obtain an indicator according
to the equations listed in Table 2. Figures 3 and 4 show the
distribution of the indicators based on various methods for the
peak and trough point, respectively. -e yellow bars represent
the indicator value, and the blue dots are the index’s price (log)
series. It should be noted that the indicator for the first year
cannot be calculated, as the window size is equal to 262
(approximately 1 year). According to both figures, there will
always be a significantly large indicator before the peak (or
trough) points, which shows that all the indicators are valid for
predicting the extremes. However, comparing the indicators
based on node degree (VG, Figures 3(a) and 4(a)) and edge
weights (WVG, Figures 3(b) and 4(b)), the indicator values
based on the edge weights more clearly detect the significant
indicators, in which most of the indicators are rounded to 0
and very few indicator values are very large, which are in-
timately related to the peak (or trough) points.

We focused on a particular extreme (financial crash)
during 2014 to 2016 in the SSE as an example to show the
interaction of the extreme events and indicators. Figure 5
shows the partial process of the formation and collapse of the
corresponding SSE index bubble. In late November 2014, the
SSE index began to rise gradually due to macroeconomic
expectations and loose monetary policy. During December
2014 to January 2015, the SSE index rose from 2680 to 3210

(nearly 20%), which is obviously a faster-than-exponential
growth of prices. -us, we can confirm that a bubble was
forming. According to Figure 5(a), it can be seen that the
fluctuation of the peak indicator increased sharply in this
period, and the maximum value of the peak indicator
appeared on December 8, 2014. After the peak indicator
reached the maximum, the SSE index continued to rise, and
the stock market risk was further increased. Meanwhile, the
financial regulatory authorities took some more stringent
measures, and the increase stopped at 5166 on June 12, 2015.
In the following two natural months, the SSE index fell by
more than 42%, a faster-than-exponential decrease. -ere
was a significant negative bubble at this stage. -e trough
indicators constructed in this work also fully reflect the
process. As shown in Figure 5(b), in the negative bubble
stage, the trough prediction indicator increased rapidly. In
late August 2015, the trough indicator fluctuated sharply. On
August 26, the lowest point was 2927.29 and the trough
indicator reached a corresponding minimum. From
Figure 5(a), we note that the peak indicators also decreased
during the negative bubble process, but the changes of the
trough indicators are more sensitive.

To test the performance of the proposed method, we
show the precision, recall, and F1 score for peak and trough
prediction in Figure 6. For the accumulated methods, the
number of neighbors is set as n � 3. -e horizontal axis
represents different thresholds of the indicators, where the
indicator with a value larger than the threshold indicates
peak (or trough) points in the following 45 trading days. As
the indicator via different methods shows a significant
difference (according to Figures 3 and 4), it would be
difficult to use the concrete values to interpret the
threshold. Here, we use the percentages to represent the
threshold in Figure 6. For example, the top 20% indicates
that the top 20% indicators are treated as the extreme
indicators. For various thresholds, we can observe that the
precision increases with increasing threshold (Figures 6(a)
and 6(d)) because of too many false-positive samples with a
small threshold. A similar phenomenon has also been
discovered in other forecasting scenarios, such as recom-
mendation systems [29] and link prediction in social
networks [30]. It is interesting to find that the recall is very
high (nearly 100%) even with very high threshold of the
indicator value, which means that almost all the real ex-
tremes (peak and trough points) can be forecast by the
indicators. According to Figure 6, one can find that the
indicators, through accumulated weights on WVG (red
bars, Pcw (or Tcw)), are more accurate than the other

Table 2: Summary of indicators.

Peak indicators (visibility graph) Trough indicators (absolute invisibility graph)
Degree (D) Pi

d � di Ti
d � di

Accumulated degree (AD) Pi
cd � 

i
k�i− n+1(dk/n) Ti

cd � 
i
k�i− n+1(dk/n)

Weight (W) Pi
w � (

i− 1
j�i− Swij/(S − 1)) Ti

w � − (
i− 1
j�i− Swij/(S − 1))

Accumulated weight (AW) Pi
cw � 

i
k�i− n+1(

k− 1
j�k− Swkj/(S − 1))/n Ti

cw � − 
i
k�i− n+1(

k− 1
j�k− Swkj/(S − 1))/n

di is the degree of node i, wij is the weight of node pair (i, j), S is the length of the observation window, n is the number of considered neighbors, and i is the
rightmost point in the corresponding observation window.
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Figure 3: Peak indicators based on di�erent methods on the Shanghai Stock Exchange (SSE) index series. Yellow bars represent the
indicator values, blue dots the original index price series, and red circles the real peak points. Inset shows the indicator distribution. (a)
Degree (D) indicator; (b) weight (W) indicator; (c) accumulated degree (AD) indicator; (d) accumulated weight (AW) indicator (a� 45,
b� 131, and S� 262).
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Figure 4: Continued.
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Figure 4: Trough indicators based on di�erent methods on the Shanghai Stock Exchange (SSE) index series. Yellow bars represent the
indicator values, blue dots the original index price series, and green circles the real trough points. Inset shows the indicator distribution. (a)
Degree (D) indicator; (b) weight (W) indicator; (c) accumulated degree (AD) indicator; (d) accumulated weight (AW) indicator (a� 45,
b� 131, and S� 262).
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Figure 5: (a) Peak and (b) trough indicators for 2014.06–2015.10, which is magni�ed on the left (a� 45, b� 131, and S� 262).
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methods both in the prediction of peak and trough points.
In addition, for various thresholds, the improvements are
still robust.

Figure 6 indicates that the indicators based on the
accumulated weight on WVG are the best way to predict
the extremes on the SSE index series. For the calculation of
Pcw (or Tcw), we must set the number of considered
neighbors (n). Figure 7 illustrates the in¢uence of n on the
prediction accuracy, and the bar represents the F1 score. It
should be pointed out that n � 1 is just Pw (or Tw) that

does not consider the neighbors’ in¢uence. Figure 7 shows
that the F1 score is very di�erent between n � 1 and n> 1,
but the increment varies slightly with increasing when
n> 1. �is indicates that the in¢uence of n is not very
signi�cant, but considering the neighbors’ in¢uence is
very important.

We check the performance of the proposed indicators on
12 major �nancial indices. Figures 8 and 9 present the F1
scores for the four indicators of peak and trough points,
respectively. Similar to the result of the SSE, the indicators
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Figure 6: Performance of extreme indicators according to di�erent methods on the Shanghai Stock Exchange (SSE) index series. (a)
Precision for peak prediction; (b) recall for peak prediction; (c) F1 score for peak prediction; (d) precision for trough prediction; (e) recall for
trough prediction; (f ) F1 score for trough prediction (a� 45, b� 131, and S� 262).
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Figure 8: Continued.
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Figure 8: Performance of peak indicators based on four methods for 12 indices. �e x axis is the threshold selected during prediction of
extreme values and the y axis is the F1 score (a� 45, b� 131, S� 262, and n� 3 (for accumulated degree (AD) or accumulated weight (AW))).
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Figure 9: Continued.
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Figure 9: Performance of trough indicators based on four methods for 12 indices. �e x axis is the threshold selected during prediction of
extreme values and the y axis is the F1 score (a� 45, b� 131, S� 262, and n� 3 (for accumulated degree (AD) or accumulated weight (AW))).
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Figure 10: Continued.
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Figure 10: Influence of a and b for the indicator through accumulated WVG on peak-point prediction performance (F1 score). Warm
colors represent high F1 values. Parameter n� 3 when we calculate the indicator with accumulated degree (AD) or accumulated weight
(AW) method.
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Figure 11: Continued.
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Figure 11: In¢uence of a and b for the indicator through accumulated WVG on trough-point prediction performance. Warm colors
represent high F1 value. Parameter n� 3 when we calculate the indicator with accumulated degree (AD) or accumulated weight (AW)
method.
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Figure 12: In¢uence of a and S for the indicator through accumulated WVG on peak-point prediction performance. Warm colors
represent high F1 value. Parameter n � 3 when we calculate the indicator with accumulated degree (AD) or accumulated weight (AW)
method.
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Figure 13: In¢uence of a and S for the indicator through accumulated WVG on trough-point prediction performance. Warm colors
represent high F1 value. Parameter n� 3 when we calculate the indicator with accumulated degree (AD) or accumulated weight (AW)
method.
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based on the accumulated weightWVGmethod significantly
outperform the others on all 12 datasets.

Among the previous experiments, the parameters are
always unchanged (a� 45, b � 131, and S � 262). In order to
test the influence of the parameters, we choose different
parameter combinations, where a � 20, 30, 40, 50, 60, 70,
80, and 90, b� 90, 125, 160, 195, 230, 265, 300, 335, and 370,
and S � 101, 131, 181, 221, 262, 350, and 400, to calculate the
F1 score on the SSE data. Figures 10–13 illustrate the in-
fluence of the combination of a and b and a and S for peak
and trough prediction, respectively. And the color repre-
sents the F1 score. -e influence of the parameter is very
significant in the whole range. However, if we focus on the
area where a ∈ [40, 90], b ∈ [90, 160], and S ∈ [221, 400],
the variance of F1 score is very slight, and the values in this
area are also much higher. Additionally, the results based
on AW also outperform the other methods in most cases.
Similarly with the AUC, we also calculate the area under PR
curve as a measure to compare the performance of the four
methods, in which a larger area below the curve indicates
both greater precision and higher recall. And Figure 14
shows the area distributions. -e results show that the
proposed methods (AW) perform better than others in
most situations.

4. Conclusions

Financial market extremes attract much attention due to
their correlation to financial bubbles and crashes. Owing to
the extreme complexity of financial markets, phenomeno-
logical investigation of stock price data plays a crucial role in
gaining a better understanding of financial dynamics. In this
work, we aimed to predict the financial extremes from the
complex network perspective based on stock indices. -e
financial extremes are defined as the peak (or trough) points
in a long period in the stock market in this work. We
proposed indicators according to the accumulated weight of
the WVG of the stock price series. Experimental results on
12 major stock indices indicate the strong predictive power
of the indicators, which would be an effective indicator for
investors to use to adjust their strategies.
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