17 research outputs found

    Fractional exhaled nitric oxide in Chinese children with asthma and allergies–A two-city study

    Get PDF
    SummaryFractional exhaled nitric oxide (FeNO) is a non-invasive biomarker of eosinophilic airway inflammation. Our aim was to study associations between FeNO in Chinese children in two cities and asthma, asthmatic symptoms, rhinitis, eczema, and selected childhood and home environmental factors.A random sample of children in Shanghai (n = 187) and Taiyuan (n = 127), and additional randomly selected children reporting current wheeze (n = 115) were invited for FeNO measurements by NIOX MINO. A questionnaire survey was performed among all subjects (12–14 y) in 59 classes in Shanghai and 44 in Taiyuan. Associations were studied using multiple linear regression using 10log transformed FeNO data and mutual adjustment.The geometric mean FeNO in the random sample (GM ± GSD) was higher in Shanghai (16.2 ± 1.9 ppb) as compared to Taiyuan (12.8 ± 1.6 ppb) (P < 0.001). In the total material (n = 429), Shanghai residency (P = 0.001), male gender (P = 0.02), parental asthma/allergy (P = 0.04), doctors' diagnosed asthma (DDA) (P < 0.001) and current wheeze (P < 0.001) were associated with higher FeNO levels. In non-wheezers (n = 291), Shanghai residency (P = 0.007), male gender (P = 0.002), DDA (P = 0.04), current rhinitis (P = 0.004) and reported pollen/furry pet allergy (P = 0.04) were positively associated with FeNO. In wheezers (n = 138), DDA was the only significant factor (P = 0.009). In conclusion, male gender, current wheeze, DDA, parental asthma/allergy, current rhinitis, pollen/furry pet allergy can be independent determinants of increased FeNO. The lower level of FeNO in Taiyuan is in agreement with previous studies showing lower prevalence of asthma and allergy in Taiyuan as compared to Shanghai

    Improved Differential Cryptanalysis on SPECK Using Plaintext Structures

    Get PDF
    Plaintext structures are a commonly-used technique for improving differential cryptanalysis. Generally, there are two types of plaintext structures: multiple-differential structures and truncated-differential structures. Both types have been widely used in cryptanalysis of S-box-based ciphers while for SPECK, an Addition-Rotation-XOR (ARX) cipher, the truncated-differential structure has not been used so far. In this paper, we investigate the properties of modular addition and propose a method to construct truncated-differential structures for SPECK. Moreover, we show that a combination of both types of structures is also possible for SPECK. For recovering the key of SPECK, we propose dedicated algorithms and apply them to various differential distinguishers, which helps to obtain a series of improved attacks on all variants of SPECK. Notably, on SPECK128, the time complexity of the attack can be reduced by a factor up to 2^15. The results show that the combination of both structures helps to improve the data and time complexity at the same time, as in the cryptanalysis of S-box-based ciphers

    Improving the Rectangle Attack on GIFT-64

    Get PDF
    GIFT is a family of lightweight block ciphers based on SPN structure and composed of two versions named GIFT-64 and GIFT-128. In this paper, we reevaluate the security of GIFT-64 against the rectangle attack under the related-key setting. Investigating the previous rectangle key recovery attack on GIFT-64, we obtain the core idea of improving the attack——trading off the time complexity of each attack phase. We flexibly guess part of the involved subkey bits to balance the time cost of each phase so that the overall time complexity of the attack is reduced. Moreover, the reused subkey bits are identified according to the linear key schedule of GIFT-64 and bring additional advantages for our attacks. Furthermore, we incorporate the above ideas and propose a dedicated MILP model for finding the best rectangle key recovery attack on GIFT-64. As a result, we get the improved rectangle attacks on 26-round GIFT-64, which are the best attacks on it in terms of time complexity so far

    Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol

    Get PDF
    Oxygenated organic molecules (OOMs) are crucial for atmospheric new particle formation and secondary organic aerosol (SOA) growth. Therefore, understanding their chemical composition, temporal behavior, and sources is of great importance. Previous studies on OOMs mainly focus on environments where biogenic sources are predominant, yet studies on sites with dominant anthropogenic emissions, such as megacities, have been lacking. Here, we conducted long-term measurements of OOMs, covering four seasons of the year 2019, in urban Beijing. The OOM concentration was found to be the highest in summer (1.6 x 10(8) cm(-3)), followed by autumn (7.9 x 10(7) cm(-3)), spring (5.7 x 10(7) cm(-3)) and winter (2.3 x 10(7) cm(-3)), suggesting that enhanced photo-oxidation together with the rise in temperature promote the formation of OOMs. Most OOMs contained 5 to 10 carbon atoms and 3 to 7 effective oxygen atoms (nO(eff) = nO - 2 x nN). The average nO(eff )increased with increasing atmospheric photo-oxidation capacity, which was the highest in summer and the lowest in winter and autumn. By performing a newly developed workflow, OOMs were classified into the following four types: aromatic OOMs, aliphatic OOMs, isoprene OOMs, and monoterpene OOMs. Among them, aromatic OOMs (29 %-41 %) and aliphatic OOMs (26 %-41 %) were the main contributors in all seasons, indicating that OOMs in Beijing were dominated by anthropogenic sources. The contribution of isoprene OOMs increased significantly in summer (33 %), which is much higher than those in the other three seasons (8 %-10 %). Concentrations of isoprene (0.2-5.3 x 10(7) cm(-3)) and monoterpene (1.1-8.4 x 10(6) cm(-3)) OOMs in Beijing were lower than those reported at other sites, and they possessed lower oxygen and higher nitrogen contents due to high NO, levels (9.5-38.3 ppbv - parts per billion by volume) in Beijing. With regard to the nitrogen content of the two anthropogenic OOMs, aromatic OOMs were mainly composed of CHO and CHON species, while aliphatic OOMs were dominated by CHON and CHON2 ones. Such prominent differences suggest varying formation pathways between these two OOMs. By combining the measurements and an aerosol dynamic model, we estimated that the SOA growth rate through OOM condensation could reach 0.64, 0.61, 0.41, and 0.30 mu g m(-3) h(-1) in autumn, summer, spring, and winter, respectively. Despite the similar concentrations of aromatic and aliphatic OOMs, the former had lower volatilities and, therefore, showed higher contributions (46 %-62 %) to SOA than the latter (14 %-32 %). By contrast, monoterpene OOMs and isoprene OOMs, limited by low abundances or high volatilities, had low contributions of 8 %-12 % and 3 %-5 %, respectively. Overall, our results improve the understanding of the concentration, chemical composition, seasonal variation, and potential atmospheric impacts of OOMs, which can help formulate refined restriction policy specific to SOA control in urban areas.Peer reviewe

    Prevalence of Childhood Atopic Dermatitis: An Urban and Rural Community-Based Study in Shanghai, China

    Get PDF
    Background: Atopic dermatitis (AD) is a common inflammatory and chronically relapsing disorder with increasing prevalence. However, little is known about its prevalence in Shanghai, the top metropolitan of China. This study will estimate and compare the prevalence of AD in urban and rural areas in representative samples of 3 to 6-year-old children in Shanghai. Methodology/Principal Findings: A descriptive cross-sectional study was performed. Pre-school children were obtained by cluster sampling from 8 communities in different districts in Shanghai. The main instrument was the core questionnaire module for AD used in the U.K. Working Party’s study. All the data were statistically analyzed by EpiData 3.1 and SPSS16.0. A total of 10436 children completed the study satisfactorily, with a response rate of 95.8%. The prevalence of AD in 3 to 6-year-old children was 8.3 % (Male: 8.5%, Female: 8.2%). The prevalence in urban areas of Shanghai was gradiently and significantly higher than that in rural areas. The highest prevalence was in the core urban area (10.2 % in Xuhui Tianping) vs. the lowest far from the urban areas (4.6 % in Chongming Baozhen). Conclusions/Significance: The prevalence of AD was 8.3 % (95%CI: 7.6%–9.1%) in children aged 3 to 6 in Shanghai. Th

    Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol-chemistry-radiation-boundary layer interaction

    Get PDF
    Despite the numerous studies investigating haze formation mechanism in China, it is still puzzling that intensive haze episodes could form within hours directly following relatively clean periods. Haze has been suggested to be initiated by the variation of meteorological parameters and then to be substantially enhanced by aerosol-radiation-boundary layer feedback. However, knowledge on the detailed chemical processes and the driving factors for extensive aerosol mass accumulation during the feedback is still scarce. Here, the dependency of the aerosol number size distribution, mass concentration and chemical composition on the daytime mixing layer height (MLH) in urban Beijing is investigated. The size distribution and chemical composition-resolved dry aerosol light extinction is also explored. The results indicate that the aerosol mass concentration and fraction of nitrate increased dramatically when the MLH decreased from high to low conditions, corresponding to relatively clean and polluted conditions, respectively. Particles having their dry diameters in the size of similar to 400-700 nm, and especially particle-phase ammonium nitrate and liquid water, contributed greatly to visibility degradation during the winter haze periods. The dependency of aerosol composition on the MLH revealed that ammonium nitrate and aerosol water content increased the most during low MLH conditions, which may have further triggered enhanced formation of sulfate and organic aerosol via heterogeneous reactions. As a result, more sulfate, nitrate and water-soluble organics were formed, leading to an enhanced water uptake ability and increased light extinction by the aerosols. The results of this study contribute towards a more detailed understanding of the aerosol-chemistry-radiation-boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.Peer reviewe

    Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    No full text
    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation field in mining coal-rock mass, is introduced. Then, a new solid-gas coupling mathematical model reflecting the coupling effects of gas adsorption/desorption, gas pressure, and coal-rock mass deformation on the mining coal-rock mass deformation and pressure relief gas flow is established combined with the corresponding definite conditions. It lays a theoretical foundation for the numerical calculation of the deformation of mining coal-rock mass and the migration law of gas under pressure relief in the outburst coal seam group

    Alisol B Alleviates Hepatocyte Lipid Accumulation and Lipotoxicity via Regulating RARα-PPARγ-CD36 Cascade and Attenuates Non-Alcoholic Steatohepatitis in Mice

    No full text
    Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease worldwide, with no effective therapies available. Discovering lead compounds from herb medicine might be a valuable strategy for the treatment of NASH. Here, we discovered Alisol B, a natural compound isolated from Alisma orientalis (Sam.), that attenuated hepatic steatosis, inflammation, and fibrosis in high-fat diet plus carbon tetrachloride (DIO+CCl4)-induced and choline-deficient and amino acid-defined (CDA)-diet-induced NASH mice. RNA-seq showed Alisol B significantly suppressed CD36 expression and regulated retinol metabolism in NASH mice. In mouse primary hepatocytes, Alisol B decreased palmitate-induced lipid accumulation and lipotoxicity, which were dependent on CD36 suppression. Further study revealed that Alisol B enhanced the gene expression of RARα with no direct RARα agonistic activity. The upregulation of RARα by Alisol B reduced HNF4α and PPARγ expression and further decreased CD36 expression. This effect was fully abrogated after RARα knockdown, suggesting Alisol B suppressed CD36 via regulating RARα-HNF4α-PPARγ cascade. Moreover, the hepatic gene expression of RARα was obviously decreased in murine NASH models, whereas Alisol B significantly increased RARα expression and decreased CD36 expression, along with the downregulation of HNF4α and PPARγ. Therefore, this study showed the unrecognized therapeutic effects of Alisol B against NASH with a novel mechanism by regulating RARα-PPARγ-CD36 cascade and highlighted Alisol B as a promising lead compound for the treatment of NASH

    Residential Risk Factors for Atopic Dermatitis in 3-to 6-Year Old Children : A Cross-Sectional Study in Shanghai, China

    No full text
    Background: Atopic dermatitis (AD) is common among pre-school children in Shanghai. This study aimed to identify the risk factors for childhood AD from the perspectives of home environment, demographics and parents-grandparents' atopic disease. Methods: A cross-sectional study was conducted in Shanghai in April-June, 2010. Preschool children's parents or guardians were invited to participate a questionnaire survey in six districts (two urban and four suburban/rural) and 6624 children were finally recruited (51.3% boys). AD diagnosis was based on the U.K. Working Party's (UKWP) criteria. Adjusted odds ratios (AOR) with 95% confidence intervals (95% CI) were calculated by multiple logistic regression. Results: A total of 8.5% of children ever had AD. Around 10.2% of the mothers had lived in newly renovated/decorated homes (NRDH) during the prenatal period (one year before or during pregnancy) and 9.5% got new home furniture (NHF) during the same period. AD was more common in children when mothers had lived in NRDH homes during the prenatal period (AOR = 1.41; 95% CI 1.03-1.93), the current home had indoor mold (2.00, 1.48-2.70), parents-grandparents' had atopic diseases (3.85, 3.05-4.87), the children had food allergy (3.40, 2.63-4.40) or children lived in urban area (1.52, 1.18-1.96). Associations between AD and NRDH, NHF and indoor molds were only significant in children without parents-grandparents' atopic diseases. There was an interaction effect between parents-grandparents' atopic diseases and NRDH (p &lt; 0.05). Conclusions: Home renovation/redecoration, new furniture and indoor mold, urban residency, heredity disposition and food allergy can be risk factors for childhood AD in Shanghai
    corecore