
Improved Differential Cryptanalysis on SPECK
Using Plaintext Structures

Zhuohui Feng1⋆
, Ye Luo1⋆

, Chao Wang1, Qianqian Yang2,3, Zhiquan Liu1, and
Ling Song1,4(B)

1 College of Cyber Security, Jinan University, Guangzhou, China
hhfzhfzh@163.com, roylaw456@gmail.com, wangchao0edu@gmail.com,

zqliu@vip.qq.com, songling.qs@gmail.com
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

yangqianqian@iie.ac.cn
4 National Joint Engineering Research Center of Network Security Detection and

Protection Technology, Jinan University, Guangzhou, China

Abstract. Plaintext structures are a commonly-used technique for im-
proving differential cryptanalysis. Generally, there are two types of plain-
text structures: multiple-differential structures and truncated-differential
structures. Both types have been widely used in cryptanalysis of S-box-
based ciphers while for SPECK, an Addition-Rotation-XOR (ARX) cipher,
the truncated-differential structure has not been used so far. In this paper,
we investigate the properties of modular addition and propose a method
to construct truncated-differential structures for SPECK. Moreover, we
show that a combination of both types of structures is also possible for
SPECK. For recovering the key of SPECK, we propose dedicated algorithms
and apply them to various differential distinguishers, which helps to
obtain a series of improved attacks on all variants of SPECK. Notably, on
SPECK128, the time complexity of the attack can be reduced by a factor
up to 215. The results show that the combination of both structures helps
to improve the data and time complexity at the same time, as in the
cryptanalysis of S-box-based ciphers.

Keywords: ARX ciphers · structures · differential cryptanalysis ·
SPECK

1 Introduction

Symmetric ciphers play a major role in providing confidentiality. According to
the nonlinear operation used in the cipher, one popular category of symmetric
ciphers is S-box-based ciphers and another is ARX ciphers that are built using
only modular additions, bit rotations, and bitwise XORs. When a symmetric
⋆ These authors contributed equally to this work.

cipher is designed, the only way to build confidence in it is through a continuous
effort to evaluate its security.

There are several families of attack against symmetric ciphers. Among them,
differential cryptanalysis [BS90] and linear cryptanalysis [MY92] are the two
major ones. Many attacks can usually be divided into two parts: a distinguisher
and a key-recovery part. Specifically, a differential distinguisher constitutes a
high-probability differential in a part of a cipher, say a differential ρ → δ over
Ed as shown in Fig. 1. The key-recovery part usually involves the rounds before
and after the distinguisher, i.e., Eb and Ef in Fig. 1. The idea is to guess the
subkeys of Eb and Ef , and check if the differential ρ → δ occurs with a high
probability for Ed. If so, the key guess is likely correct. This paper focuses on
the key-recovery part.

Eb Ed Ef
ρ δρ′ δ′

nb
nf

Fig. 1: Overview of differential attacks

Plaintext structures. Along with the invention of differential cryptanalysis,
structures of plaintexts are used to improve the attack. Roughly, two types of
structures were proposed and widely used in the literature. Before we recall the
two types, we define a ratio Rm/p between the number of messages and the
number of message pairs that satisfy the input difference of the distinguisher.
Then the data complexity is the product of Rm/p and the number of required
pairs satisfying the input difference.

Multiple-differential structures (Type-I) This type of plaintext structures
is applied to the case where the target cipher E = Ef ◦ Ed. Without using
this type of structures, a pair costs two messages, i.e., Rm/p = 2. When
this type of structures is used, the ratio Rm/p is expected to be lower than
2. A typical situation is that several differential trails over Ed are used
simultaneously [BS91]. Suppose we use two trails with input differences
∆1 and ∆2. If we prepare N pairs of plaintexts for each input difference
separately, it takes 4N plaintexts in total. However, when we pack them into
structures, as shown in Fig. 2, we can get 2 pairs for each input difference
from a structure of 4 plaintexts, resulting in Rm/p = 1. That is to say, the use
of Type-I structure helps to reduce the data complexity and potentially the

2

time complexity. Note, this type of structures was first used in the differential
attack on 15-round DES [BS91].

𝑃1

𝑃2

𝑃3

𝑃4

Δ1

Δ2

Δ2

Δ1

Fig. 2: Example of Type-I structures

Truncated-differential structures (Type-II) The second type of plaintext
structures is applied to the case where the target cipher E = Ef ◦ Ed ◦ Eb

or E = Ed ◦ Eb, i.e., there are some rounds before the distinguisher. As
illustrated in Fig. 1, the input difference ρ of the distinguisher propagates
backward to ρ′ through Eb, where nb bits of ρ′ are active. A structure of this
type consists of 2nb plaintexts where inactive bits are constant while active
bits are traversed. Among each structure of 2nb plaintexts, about 2nb−1 out
of 22nb−1 pairs satisfy the input difference ρ of the distinguisher. In order
to have N pairs of plaintexts leading to ρ, still 2N plaintexts are needed.
That is to say, both Rm/p and the data complexity remain the same. The
possible gain is to attack more rounds or reduce the time complexity. Note,
this type of structures was used to reach a full-round differential attack on
DES [BS92].

As a common technique, both types of structures have been widely used in
the cryptanalysis of S-box-based ciphers, e.g., [BS91,BK09]. For ARX ciphers,
Type-I structures have been used to reduce the data complexity of differential-like
attacks on a series of ARX ciphers, like Chaskey [Leu16] and SPECK [Goh19],
and Type-II structures have been used to mount impossible differential attacks
and truncated differential attacks on ARX ciphers, such as XTEA, TEA and
HIGHT [MHL+02,HHK+04,CWP12]. However, to the best of our knowledge,
Type-II structures have not been applied to SPECK.

In differential cryptanalysis of ARX ciphers, extending some rounds before
the distinguisher is possible, but it may bring no benefit in the general case. The
problem is that these ciphers typically have 32-bit or 64-bit words. Even though
the input difference ρ of the distinguisher may have a few active bits, full-word
subkeys of Eb have to be guessed to ensure the ρ difference. In other words,
adding rounds before the distinguisher brings no benefit (compared to adding
rounds after the distinguisher). Therefore, this usually does not give efficient
attacks. In this paper, we study in which case the Type-II structures can be
applied to SPECK and what benefits they can bring.

SPECK. SPECK is a family of ARX ciphers which were designed in 2013 by re-
searchers from the U.S. National Security Agency (NSA) [BSS+13]. Its struc-
ture is a generalized Feistel structure and it provides excellent performance in

3

both hardware and software. The SPECK family has 10 variants, denoted by
SPECK2n/mn, where 2n is the block size and mn is the key size. Since the design
of SPECK was published, it has attracted intensive cryptanalysis from the com-
munity [BRV14,ALLW14,Din14,FWG+16,SHY16,LLJW20,BdST+22,WW22].
Besides these classical cryptanalysis, there also exist some cryptanalysis using
deep learning [Goh19,BGL+23] whose basis is differential characteristics. So far,
differential-like cryptanalysis is the most powerful attack against SPECK. Note
that none of the previous differential attacks employ the Type-II structures in
the key-recovery attacks on SPECK.

Our contributions. We start with studying the differential properties of modular
addition. Due to the fact of modular addition that the lower bits of the output are
affected only by the lower bits of the inputs, the differential propagation can be
confined to the higher bits when the inputs have zero difference in the lower bits.
We then introduce two parameters nBIL and nFIL to denote the numbers of inactive
lower bits for the output of modular subtraction and addition, respectively. Based
on these properties of modular addition, we formalize the construction of Type-II
structures for SPECK. Moreover, we show that Type-II structures and Type-I
structures can be combined for ARX ciphers and applied to SPECK.

Further, we propose three algorithms for key recovery attacks on SPECK, i.e.,
Algorithm A, B and C, which target the cases using Type-I structures, Type-II
structures, and a combination of both, respectively. Algorithm A mainly achieves
the goal of reducing the data complexity when compared with previous attacks.
The aim of Algorithm B is to utilize Type-II structures so as to reduce the time
complexity. Algorithm C combines the ideas of Algorithm A and B and helps to
improve the data and time complexity at the same time. Note the improvement
in the time complexity is proportional to nBIL and nFIL.

In order to prepare suitable distinguishers of SPECK for these three algorithms,
we particularly search for differential trails with nBIL and nFIL as large as possible.
We then mount attacks by applying the three algorithms to newly obtained
differential distinguishers. The resulting attacks on SPECK and the previous works
are presented in Table 1. More detailed results on SPECK in this work are displayed
in Table 11. The results show that the use of Type-II structures helps to reduce
the time complexity by a factor up to 215 and in many cases, both the time and
data complexity are reduced to a certain extent.

Our work shows that Type-II structures are possible for SPECK and help
to improve the time complexity in certain cases. Their application should not
be limited to standard differential cryptanalysis of SPECK. Other attacks to
which Type-II structures can be potentially applied include boomerang attacks,
differential-linear attacks, impossible differential attacks, etc.

Table 1: Comparison of our attack on SPECK with the previous works

Variants Rounds Probability Data Time Memory Reference
32/64 14/22 2−30 231 263 222 [Din14]

Continued on next page

4

Table 1 – Continued from previous page
Variants Rounds Probability Data Time Memory Reference

14/22 2−29.47 230.47 262.47 222 [SHY16]
14/22 2−29.37 231.75 260.99 241.91 [BdST+22]
14/22 2−27.68 230.26 260.58 236 This
15/22 2−30.39 231.39 263.39 222 [LKK+18]
15/22 2−30.39 231.39 262.25 - [BdST+22]

48/72 15/22 2−45 246 270 222 [FWG+16]
15/22 2−44.31 245.31 269.31 222 [SHY16]
15/22 2−43.42 244.42 270 222 This
16/22 2−46.80 247.80 271.80 222 [LKK+18]
16/22 2−45.78 246.78 271.78 222 This

48/96 16/23 2−45 246 294 222 [FWG+16]
16/23 2−44.31 245.31 293.31 222 [SHY16]
16/23 2−43.42 244.42 294 222 This
17/23 2−46.80 247.80 295.80 222 [LKK+18]
17/22 2−45.78 246.78 295.78 222 This

64/96 19/26 2−62 263 295 222 [FWG+16]
19/26 2−59.30 261.88 293.34 268 This
19/26 2−60.56 261.56 293.56 222 [SHY16]
19/26 2−58.24 260.82 292.28 268 This

64/128 20/27 2−62 263 2127 222 [FWG+16]
20/27 2−59.30 261.88 2125.34 268 This
20/27 2−60.56 261.56 2125.56 222 [SHY16]
20/27 2−60.73 263.96 2122.69 277.19 [BdST+22]
20/27 2−58.24 260.82 2124.28 268 This

96/96 19/28 2−87 288 288 222 [FWG+16]
19/28 2−86 287 288 222 This
20/28 2−94.94 295.94 295.94 222 [SHY16]
20/28 2−92.17 293.17 295.75 222 This

96/144 20/29 2−87 288 2136 222 [FWG+16]
20/29 2−86 287 2136 222 This
21/29 2−94.94 295.94 2143.94 222 [SHY16]
21/29 2−92.17 293.17 2143.75 222 This
21/29 2−91.03 293.61 2143.13 299 This

128/128 22/32 2−119 2120 2120 222 [FWG+16]
22/32 2−117 2118 2120.81 222 This
23/32 2−124.35 2125.35 2125.35 222 [SHY16]
23/32 2−121.37 2122.37 2124.95 222 This

128/192 23/33 2−119 2120 2184 222 [FWG+16]
23/33 2−117.19 2119.77 2168.35 2131 This
24/33 2−124.35 2125.35 2189.35 222 [SHY16]
24/33 2−121.37 2123.95 2174.53 2129 This

128/256 24/34 2−119 2120 2248 222 [FWG+16]
24/34 2−117.19 2119.77 2232.35 2131 This
25/34 2−124.35 2125.35 2253.35 222 [SHY16]
25/34 2−121.37 2123.95 2238.53 2129 This

5

Organization. The paper is organized as follows. In Section 2, we introduce
some preliminaries, including notations, a description of SPECK, and a previous
key recovery attack on it. In Section 3, we study the properties of modular
addition and propose some propositions, based on which Type-II structures and
a combination of both types of structures can be constructed for ARX ciphers. In
Section 4, we introduce three key recovery algorithms for SPECK using different
types of structures. We apply them to all variants of SPECK and obtain a series
of improved attacks in Section 5. Finally, we conclude this work in Section 6.

2 Preliminaries

2.1 Notations

Given an n-bit word x, we denote its ith bit for i ∈ {0, 1, ..., n − 1} by x[i] and
its ith bit to jth bit by x[j : i], i ≤ j. Given two n-bit words x and y, we denote
by x ⊞ y their addition modulo 2n, by x ⊟ y their modular subtraction, by x ⊕ y
the bitwise XOR operation, by x ∨ y the bitwise OR operation and by x ∧ y the
bitwise AND operation between them. Given an n-bit word x and a positive
integer i, we denote by x ≫ i the n-bit word obtained by rotating x by i bits to
the right, and by x ≪ i the word obtained by rotating x to the left.

In this paper, we denote the ith round of SPECK by Round i where i ∈
{1, 2, . . . , T}. The output of Round i is denoted by xi and yi and ki−1 is used to
denote the round keys of Round i.

2.2 Specification of SPECK

SPECK is a family of lightweight block ciphers designed by researchers from the
U.S. National Security Agency (NSA) [BSS+13]. There are 10 variants, each of
which is characterized by its block size 2n and key size mn. Some parameters for
all variants of SPECK are specified in Table 2.

Table 2: The parameters of SPECK
block size 2n key size mn word size n key word size m rot a rot b Rnds T

32 64 16 4 7 2 22
48 72 24 3 8 3 22

96 4 23
64 96 32 3 8 3 26

128 4 27
96 96 48 2 8 3 28

144 3 29
128 128 64 2 8 3 32

192 3 33
256 4 34

6

The round function of SPECK is shown in Fig. 3, in which there are two n-bit
words xi and yi as inputs and two n-bit words xi+1 and yi+1 are outputs after
some operations of rotation, modular addition and XOR with the key word. The
round function is defined as:

(xi+1, yi+1) = Rki
(xi, yi) = (((xi ≫ a)⊞yi)⊕ki, (yi ≪ b)⊕((xi ≫ a)⊞yi)⊕ki),

where ki is the round key for 0 ≤ i < T .

Fig. 3: The round function of SPECK

The SPECK key schedule takes an initial m-word master key (lm−2, . . . , l0, k0)
and from it generates a sequence of T round key words k0, . . . , kT −1 as follows.

li+m−1 = (ki ⊞ (li ≫ a)) ⊕ i,

ki+1 = (ki ≪ b) ⊕ li+m−1, 0 ≤ i < T.

From the specification of SPECK, two simple properties can be obtained directly.

Property 1. If the output of Round i + 1, i ≥ 0 is known, i.e., (xi+1, yi+1) is
known, one of the input word yi can be determined by yi = (xi+1 ⊕ yi+1) ≫ b.

Property 2. If m consecutive round keys of SPECK are known, i.e., ki−m, · · · , ki−1
for i > m, we can efficiently invert the key schedule as follows to determine
ki−m−1, · · · , and so on until we have the original m master key words.

lj+m−3 = kj−1 ⊕ (kj−2 ≪ b),
lj−2 = ((lj+m−3 ⊕ (j − 2)) ⊟ kj−2) ≪ a,

kj−m−1 = kj−m ⊕ lj−2) ≫ b.

Consequently, the key recovery attacks of SPECK are equivalent to recovering m
consecutive round keys.

7

2.3 Dinur’s Key Recovery Attack

In [Din14], Dinur paid attention to the key-recovery part of differential attacks
on SPECK and proposed an algorithm to recover the key of 1 + r + m rounds using
an r-round differential characteristic. This algorithm is very efficient and was
adopted in later differential cryptanalysis of SPECK [FWG+16,SHY16].

In this algorithm, the core part was a sub-procedure called the 2-round attack.
Due to Property 1 of SPECK, if we know the input difference (∆xi, ∆yi) and the
output difference (∆xi+2, ∆yi+2) of the 2-round transformation, we can derive
the differences after Round i + 1, i.e., ∆yi+1 = (∆xi+2 ⊕ ∆yi+2) ≫ b and
∆xi+1 = (∆yi ≪ b) ⊕ ∆yi+1 as shown in Fig. 4. In addition, we can derive the
value of yi+1 from the known xi+2 and yi+2.

Fig. 4: The differences of the two rounds in Dinur’s attack

In the whole key-recovery attack, these two rounds are located exactly after
the differential distinguisher. Therefore, (∆xi, ∆yi) should match the output
difference of the differential distinguisher. After these two rounds, there are
additional m − 2 rounds. Guessing the last m − 2 round keys, one can compute
the exact values of (xi+2, yi+2) and (∆xi+2, ∆yi+2) as well.

In other words, all the input and output differences of the modular addition
of Round i + 1 and Round i + 2 are known whereas xi, yi and xi+1 are unknown.
The objective of the 2-round attack is to find all possible independent round keys
ki and ki+1 from xi, yi and xi+1 by solving differential equations of addition. On
average, there are no more than two solutions for kr+1 and kr+2 [Din14]. The

8

time complexity of the 2-round attack is less than 2 encryptions of SPECK and
the memory complexity is about 222 bytes which is small. For more details of
the 2-round attack, please refer to Appendix A.1.

Note that the first round of SPECK can be seen as a whitening layer and thus
covered for free. Given an r-round differential ρ → δ of probability 2−w, the main
steps of Dinur’s algorithm to attack 1 + r + m rounds are listed as follows.

1. For i = 1, · · · , 2w, choose a random P and get P ′ such that R̄(P ′) = R̄(P)⊕ρ,
where R̄ is the round function without round key addition. Request the
encryption of (P, P ′).
(a) Guess the last m − 2 round keys, i.e., none when m = 2, kr+3 when

m = 3, and kr+3, kr+4 when m = 4. Then do partial decryption.
i. Run the 2-round attack using (∆xr+1, ∆yr+1) = δ, (∆xr+3, ∆yr+3)

and (xr+3, yr+3) and return solutions of kr+1 and kr+2.
ii. For each returned value of kr+1 and kr+2 together with the guessed

m − 2 subkeys, recover the master key. Test the master key using
trial encryptions, and return it if the trial encryptions succeed.

The above algorithm recovers the last m consecutive round keys, from which
the master key can be derived according to Property 2. The complexities of the
algorithm are summarized as follows.

• DDinur = 2w+1 plaintexts;
• TDinur = 2(m−2)n × 2w × 2 = 2 × 2(m−2)n+w encryptions, where m = 2, 3, 4;
• MDinur = 222 bytes.

Remark 1. Since this algorithm enumerates and tests all possible candidates
of the last m round keys, the attack will succeed as long as the distinguisher
succeeds. Consequently, it has a high success probability.

3 Properties of Modular Addition and Structures

In this section, we give some properties of modular addition, based on which one
could construct plaintext structures for SPECK as in cryptanalysis of S-box-based
ciphers.

3.1 Properties of Modular Addition

The addition modular 2n in cryptographic primitives is a nonlinear transformation
that is extremely fast in the calculation. Given two n-bit words x and y, we let
z = x ⊞ y where the carry word is denoted by c. Some operation rules about the
carry word c are listed as follows.

c[0] = 0,

c[i + 1] = x[i] ∧ y[i] ⊕ x[i] ∧ c[i] ⊕ y[i] ∧ c[i], i ∈ {0, 1, . . . , n − 2},

z[i] = x[i] ⊕ y[i] ⊕ c[i], i ∈ {0, 1, . . . , n − 1}.

9

With these in mind, we look into the XOR differences of modular addition.
Let x̃ = x ⊕ α, ỹ = y ⊕ β, z̃ = x̃ ⊞ ỹ, and z̃ ⊕ z = γ, where α, β and γ are
differences, as shown in Fig. 5. Let c, c̃ respectively denote the carry words of
x ⊞ y, x̃ ⊞ ỹ and let ∆c = c ⊕ c̃. Then we have

γ[i] = z[i] ⊕ z̃[i] = x[i] ⊕ y[i] ⊕ c[i] ⊕ x̃[i] ⊕ ỹ[i] ⊕ c̃[i] = α[i] ⊕ β[i] ⊕ ∆c[i].

Fig. 5: The differences of the modular addition Fig. 6: The differences of Round 2

In the following, we give three propositions of the differences of modular
addition.

Proposition 1. Let z = x ⊞ y and z̃ = x̃ ⊞ ỹ, where α = x ⊕ x̃, β = y ⊕ ỹ and
γ = z ⊕ z̃. Given β, γ where β[j : 0] = γ[j : 0] = 0, 0 ≤ j < n, then α[j : 0] = 0.

Proof. When β[0] = 0 and γ[0] = 0, we have α[0] = γ[0] ⊕ β[0] ⊕ ∆c[0] = 0.
Therefore, ∆c[1] = 0. Then when β[1] = 0, γ[1] = 0, as α[1] = γ[1]⊕β[1]⊕∆c[1] =
0, we have ∆c[2] = 0, and so on. ⊓⊔

Definition 1 (Backward inactive lower bits (BIL)). Under the setting in
Proposition 1, α[j : 0] = 0, 0 ≤ j < n. We call α[j : 0] the backward inactive
lower bits for the addition and BIL for short. Denote the length of α[j : 0] in bits
by nBIL.

Proposition 2. Let z = x ⊞ y and z̃ = x̃ ⊞ ỹ, where α = x ⊕ x̃, β = y ⊕ ỹ and
γ = z ⊕ z̃. Given β, γ where β[j : 0] = γ[j : 0] = 0 and β[j + 1] ∨ γ[j + 1] = 1,
0 ≤ j < n − 1, then α[j + 1] = β[j + 1] ⊕ γ[j + 1] and Pr[α[u] = 1] for any
u ∈ (j + 1, n) is non-zero if z and y are taken randomly (or equivalently x, y are
taken randomly).

Proof. According to Proposition 1, we have α[j : 0] = 0 and ∆c[j + 1] = 0. When
β[j + 1] ∨ γ[j + 1] = 1, we have α[j + 1] = β[j + 1] ⊕ γ[j + 1] ⊕ ∆c[j + 1] =
β[j +1]⊕γ[j +1]. We prove the subsequent cases by exhaustive calculation which
is shown in Table 3(a) and 3(b).

10

i) For u = j + 2, as β[u − 1] ∨ γ[u − 1] = 1 and ∆c[u − 1] = 0, we have
Pr[∆c[u] = 0] = Pr[∆c[u] = 1] = 1

2 , according to Table 3(b);
ii) For u ≥ j + 3, let Pr[∆c[u − 1] = 1] = p. According to Table 3(b),

a) when (β[u − 1], γ[u − 1])=(0,0), Pr[∆c[u] = 0] = 1 − p + 1
2 p = 1 − 1

2 p,
Pr[∆c[u] = 1] = 1

2 p > 0;
b) when (β[u − 1], γ[u − 1])=(0,1), Pr[∆c[u] = 0] = 1

2 (1 − p) + 1
2 p = 1

2 ,
Pr[∆c[u] = 1] = 1

2 p + 1
2 (1 − p) = 1

2 ;
c) when (β[u − 1], γ[u − 1])=(1,0), Pr[∆c[u] = 0] = 1

2 , Pr[∆c[u] = 1] = 1
2 ;

d) when (β[u − 1], γ[u − 1])=(1,1), Pr[∆c[u] = 0] = 1
2 (1 − p), Pr[∆c[u] =

1] = 1
2 (1 − p) + p = 1

2 + 1
2 p.

In summary, for any u ∈ (j + 1, n), 0 < Pr[∆c[u] = 1] < 1. Therefore, due to
α[u] = β[u] ⊕ γ[u] ⊕ ∆c[u], we will get α[u] = 0 or α[u] = 1 with certain non-zero
probability. ⊓⊔

Similarly, on the other side we have the following proposition.

Proposition 3. Let z = x ⊞ y and z̃ = x̃ ⊞ ỹ, where α = x ⊕ x̃, β = y ⊕ ỹ and
γ = z ⊕ z̃. Given α, β where α[j : 0] = β[j : 0] = 0, 0 ≤ j < n, then γ[j : 0] = 0.

Definition 2 (Forward inactive lower bits (FIL)). Under the setting of
Proposition 3, γ[j : 0] = 0, 0 ≤ j < n. We call γ[j : 0] the forward inactive lower
bits of the addition and FIL for short. Denote the length of γ[j : 0] in bits by nFIL.

3.2 Type-II Structures for SPECK

Let us come to the key recovery part of differential attacks. Given a differential
ρ → δ of an ARX cipher, suppose we prepend one round to it. For the modular
addition of this extra round, we still denote its input differences and the output
difference by α, β → γ, where the differences β and γ should match the input
difference of the differential.

If β and γ are some random differences, α will be regarded as random as well.
In terms of notations in Fig. 1, it leads to a large nb, i.e., a large number of
plaintext bits will be active. In contrast, if the lower bits or the least significant
bit of β and γ are 0, we can know for sure the same number of lower bits of α
are zero as well, while its higher bits or the most significant bit can be either 1
or 0. That is to say, for certain proper differentials, the number of active bits in
the plaintext can be small.

A common experience in differential cryptanalysis of S-box-based ciphers is
that a small nb is desirable, so it would be interesting to see the effect of building
Type-II structures on the active higher bits of some input words of SPECK.

In the following, we will show how Type-II structures of SPECK can be built
by exploiting Proposition 1 and 2 and discuss the possibility of applying both
types of structures to ARX ciphers simultaneously.

Type-II structures for SPECK. Note that the first round of SPECK acts as a
whitening layer, so it can be covered for free. Now we consider adding two rounds

11

Table 3: All cases of the differences of the carry bits ∆c[u] in the modular addition.
(a)All cases of β[u − 1] and γ[u − 1]. (b)The exhaustive calculation of ∆c[u] for all
possible y[u − 1], ỹ[u − 1], z[u − 1], z̃[u − 1], c[u − 1], c̃[u − 1] where j + 1 < u.

(a)

ID β[u − 1] γ[u − 1] y[u − 1],ỹ[u − 1] α[u − 1]
z[u − 1],z̃[u − 1] ∆c[u − 1] = 0 ∆c[u − 1] = 1

1

0 0

0, 0, 0, 0

0 12 1, 1, 0, 0
3 0, 0, 1, 1
4 1, 1, 1, 1
5

0 1

0, 0, 0, 1

1 06 0, 0, 1, 0
7 1, 1, 0, 1
8 1, 1, 1, 0
9

1 0

0, 1, 0, 0

1 010 0, 1, 1, 1
11 1, 0, 0, 0
12 1, 0, 1, 1
13

1 1

0, 1, 0, 1

0 114 0, 1, 1, 0
15 1, 0, 0, 1
16 1, 0, 1, 0

(b)

ID
x[u − 1], x̃[u − 1], c[u], c̃[u], (∆c[u])

(c[u − 1], c̃[u − 1]) (c[u − 1], c̃[u − 1]) (c[u − 1], c̃[u − 1]) (c[u − 1], c̃[u − 1])
=(0, 0) =(1, 1) =(0, 1) =(1, 0)

1 0, 0, 0, 0 (0) 1, 1, 1, 1 (0) 0, 1, 0, 1 (1) 1, 0, 1, 0 (1)
2 1, 1, 1, 1 (0) 0, 0, 1, 1 (0) 1, 0, 1, 1 (0) 0, 1, 1, 1 (0)
3 1, 1, 0, 0 (0) 0, 0, 0, 0 (0) 1, 0, 0, 0 (0) 0, 1, 0, 0 (0)
4 0, 0, 0, 0 (0) 1, 1, 1, 1 (0) 0, 1, 0, 1 (1) 1, 0, 1, 0 (1)
5 0, 1, 0, 0 (0) 1, 0, 1, 0 (1) 0, 0, 0, 0 (0) 1, 1, 1, 0 (1)
6 1, 0, 0, 0 (0) 0, 1, 0, 1 (1) 1, 1, 0, 1 (1) 0, 0, 0, 0 (0)
7 1, 0, 1, 0 (1) 0, 1, 1, 1 (0) 1, 1, 1, 1 (0) 0, 0, 1, 0 (1)
8 0, 1, 0, 1 (1) 1, 0, 1, 1 (0) 0, 0, 0, 1 (1) 1, 1, 1, 1 (0)
9 0, 1, 0, 1 (1) 1, 0, 1, 1 (0) 0, 0, 0, 1 (1) 1, 1, 1, 1 (0)
10 1, 0, 0, 0 (0) 0, 1, 0, 1 (1) 1, 1, 0, 1 (1) 0, 0, 0, 0 (0)
11 1, 0, 1, 0 (1) 0, 1, 1, 1 (0) 1, 1, 1, 1 (0) 0, 0, 1, 0 (1)
12 0, 1, 0, 0 (0) 1, 0, 1, 0 (1) 0, 0, 0, 0 (0) 1, 1, 1, 0 (1)
13 0, 0, 0, 0 (0) 1, 1, 1, 1 (0) 0, 1, 0, 1 (1) 1, 0, 1, 0 (1)
14 1, 1, 0, 1 (1) 0, 0, 0, 1 (1) 1, 0, 0, 1 (1) 0, 1, 0, 1 (1)
15 1, 1, 1, 0 (1) 0, 0, 1, 0 (1) 1, 0, 1, 0 (1) 0, 1, 1, 0 (1)
16 0, 0, 0, 0 (0) 1, 1, 1, 1 (0) 0, 1, 0, 1 (1) 1, 0, 1, 0 (1)

12

before a differential of SPECK. Suppose the input difference of the differential is
ρ = (ρL, ρR) and its probability is 2−w. Further, suppose the input difference
ρ of the differential propagates backward to (α, β) marked in Fig. 6 such that,
according to Proposition 1 and 2, α has the form

α = 0b ∗ · · · ∗︸ ︷︷ ︸
s

c 0 · · · 0︸ ︷︷ ︸
n−s−1

,

where the most significant s bits of α can take any possible value and c is a
known constant. As for β, it can be computed from ρ and thus is fixed.

We then construct structures at the beginning of the second round. In this
situation, pairs formed from the structures will satisfy the input difference ρ of
the differential probabilistically rather than deterministically. We will show that
the required data remains the same as that in Dinur’s attacks [Din14].

The goal of the data collection phase is to generate pairs (x1, y1) and (x′
1, y′

1)
whose difference is (α, β). From such pairs, the difference between (x1 ⊕ k0 ≫
a)⊞(y1 ⊕k0) and (x′

1 ⊕k0 ≫ a)⊞(y′
1 ⊕k0) is expected to equal γ with probability

2−s under some unknown round keys k0. To achieve this, we could generate such
pairs using twin structures:

S = {(x1, y1)|x1[n − s − 1 : 0], y1 = c1, x1[n − 1 : n − s] ∈ {0, 1}s},

S′ = S ⊕ ∆ = {(x′
1, y′

1)|(x1, y1) ∈ S, x′
1[n − s − 1 : 0] = x1[n − s − 1 : 0] ⊕ c0 · · · 0,

y′
1 = y1 ⊕ β, x′

1[n − 1 : n − s] ∈ {0, 1}s}, where ∆ = 0b0 · · · 0c0 · · · 0||β. (1)

From such a pair of twin structures, we can generate 22s pairs of (x1, y1) and
(x′

1, y′
1), and 2s pairs are expected to lead to γ, meeting the input difference of

the distinguisher.
Suppose 2t pairs of twin structures are used. We need 2w pairs of (x1, y1) and

(x′
1, y′

1) that satisfy the input difference of the distinguisher to have at least one
right pair for the differential. Therefore, 2s+t = 2w and s + t = w. The total data
complexity for 2t pairs of twin structures is

D = 2t+s+1 = 2w+1,

which is the same as that in Dinur’s attacks. This confirms again that Type-II
structures do not help to reduce the data complexity. Therefore, in this paper,
the purpose of using Type-II structures is not to reduce the data complexity, but
to reduce the time complexity. This will be shown in Section 4.2.

3.3 Combining Both Types of Structures

Recall that the use of Type-I structures helps to reduce the data complexity.
What if we use both types of structures simultaneously? Can we reduce the time
and data complexity at the same time?

Suppose we have two differentials (ρ1 → δ) and (ρ2 → δ) of the same
probability for SPECK and ρ1 and ρ2 propagate back over one round to (α1, β1)

13

and (α2, β2), respectively, where α1 and α2 share the same number of zero bits
in the lower part. Then we choose four structures as follows.

S, S ⊕ ∆1, S ⊕ ∆2, S ⊕ ∆1 ⊕ ∆2, (2)

where ∆1 and ∆2 are derived from (α1, β1) and (α2, β2) in a way presented
in Equation (1). Actually, these four sets form a Type-I structure of Type-II
structures.

If the size of each Type-II structure is 2s, then we can get about 2 × 2s

pairs satisfying ρ1 and about 2 × 2s pairs satisfying ρ2. Now the ratio between
the number of messages and the number of message pairs meeting one of the
input differences becomes 1, i.e., Rm/p = 1. Generally, if there are h differentials,
Rm/p = 2

h , which is much lower than 2. This shows that the combination of both
types of structures may bring benefits of each together. This will be shown in
Section 4.3.

4 New Key Recovery Algorithm for SPECK

In this section, we propose three generic key recovery algorithms for SPECK which
respectively use Type-I structures, Type-II structures and a combination of both
types of structures. In particular, we will highlight the benefit each algorithm
may bring.

4.1 Algorithm A Using Type-I Structures

Suppose we have a set of h differentials {ρj → δ} for j = 1, · · · , h over r rounds
and the corresponding probabilities are pj where

h∑
j=1

pj = p̂ = 2−ŵ,

as given in the left part of Fig. 7. We build Type-I structures using the h input
differences and adapt Dinur’s attack to the multiple-differential case. The goal is
to attack 1 + r + m rounds. The steps of Algorithm A are as follows.

input diff., single output diff. Multiple input diff., multiple output diff.

Fig. 7: Two examples where Type-I structures can be applied

For i = 1, · · · , 2t:

14

1. Construct a structure S of 2h data by taking the h input differences ρj as a
basis.

2. Guess the last m − 2 round keys. Do partial decryptions to have intermediate
values (xr+3, yr+3).
(a) For each input difference ρj , j = 1, · · · , h, generate 2h−1 pairs of (P, P ′)

meeting the ρj difference. For each pair,
i. Run the 2-round attack using (∆xr+1, ∆yr+1) = δ, (∆xr+3, ∆yr+3)

and (xr+3, yr+3) and return solutions of kr+1 and kr+2;
ii. For each solution together with the guessed m − 2 subkeys, recover

the master key and test it using trial encryptions, and return it if the
trial encryptions succeed.

It takes 2t × 2h data and let 2t × 2h−1 ×
∑

j pj = 1, meaning the expected
number of right pair is one. Therefore h + t = ŵ + 1. Then we can summarize
the complexities of Attack A as follows.

• DA = 2ŵ+1 plaintexts;
• TA = 2t ×2(m−2)n ×h×2h−1 ×2 = cA ·2(m−2)n+ŵ ×h = cA ·2(m−2)n 1

(
∑

pj)/h

encryptions, where cA = 2, m = 2, 3, 4;
• MA = max{222, 2h}.

Extended to multiple output differences. The above algorithm can also be
extended to the case with multiple output differences (see the right part of Fig. 7).
Suppose we have g output differences δi, i = 1, · · · , g. Each output difference
δi corresponds to hi input differences, i.e., {ρi,j → δi} of probability pi,j for
j = 1, · · · , hi. Let ∑

i,j

pi,j = p̂ = 2−ŵ, H = h1 + · · · + hg.

Suppose among the H input differences ρi,js, H ′ of them are linearly independent
when we treat them as binary vectors. We can attack 1 + r + m rounds following
the procedure below.

For i = 1, · · · , 2t:

1. Construct a structure S of 2H′ data by taking the H ′ independent input
differences ρi,j as a basis.

2. Guess the last m − 2 round keys. Do partial decryptions to have intermediate
values (xr+3, yr+3).
(a) For each input difference ρi,j and each output difference δi, j = 1, · · · , hi,

i = 1, · · · , g, generate 2hi−1 × 2H′−hi pairs of (P, P ′) meeting the ρi,j

difference. For each pair:
i. Run the 2-round attack using (∆xr+1, ∆yr+1) = δ, (∆xr+3, ∆yr+3)

and (xr+3, yr+3) and return solutions of kr+1 and kr+2;
ii. For each returned value of kr+1 and kr+2 together with the guessed

m − 2 subkeys, recover the master key and test it using trial encryp-
tions.

15

It takes 2t ×2H′ data and let 2t ×2H′−1 ×
∑

i,j pi,j = 1. Therefore H ′ + t = ŵ +1.
Then we can summarize the complexities of Attack A as follows.

• DA = 2ŵ+1 plaintexts;
• TA = 2t×2(m−2)n×H×2H′−1×2 = cA·2(m−2)n+ŵ×H = cA·2(m−2)n 1(∑

i,j
pi,j

)
/H

=

cA · 2(m−2)n · H
p̂ encryptions, where cA = 2, m = 2, 3, 4;

• MA = max{222, 2H′}.

Example. Table 4 lists some examples which demonstrate the improvement
brought by Algorithm A. In these two attacks on 14-round SPECK32/64, the
probability of all differential trails we use is 2−30. The result shows the data
complexity is reduced by using Type-I structures.

Table 4: Example of attacks using Algorithm A
Variants Split #Trails h g Data Time Mem. Ref

32/64 1+9+4 1 1 1 231 263 222 [Din14]
1+9+4 5 5 1 228.68 263 222 Alg. A
1+9+4 15 15 6 227.09 263 222 Alg. A

Experiment. We mainly test whether we can get right pairs as expected. We
construct Type-I structures and use a 5-round distinguisher for the 10-round
SPECK32/64 attack. The experiment results demonstrate that no matter how
many right pairs we set, we can always get the expected number of right pairs.

4.2 Algorithm B Using Type-II Structures

Suppose we have a differential ρ = (ρL, ρR) → δ = (δL, δR) with probability
p = 2−w. Also, suppose the output difference δ leads to nFIL forward inactive
lower bits for the addition in the next round and the input difference results in
nBIL backward inactive lower bits for the addition in the earlier round. The goal
of Algorithm B is to attack 2 + r + (m − 1) rounds using Type-II structures for
m = 3, 4.

Switch to the counting method. When we use Type-II structures, there are
two rounds before the distinguisher. If we guess the last m − 2 round keys, the
time complexity will exceed 2mn, because we need to process more pairs than that
in Dinur’s attack. Thus, in our attack we only guess the last m − 3 round keys.
For Round r + 3 and Round r + 4, we can also mount a 2-round attack to recover
round keys kr+2 and kr+3. However, due to Property 2, testing the recovered
round keys using trial encryptions is possible only when we have information of
m consecutive round keys. In this case, we only have the last m − 1 consecutive

16

rounds keys (or with the first round key). This makes the enumerating method
infeasible.

A way to get around this issue is to switch to the common counting method.
The number of message pairs that meet the input difference ρ and the output
difference δ under each possible key value is recorded. The key values with
the highest counters are the likeliest right key. Thus, a shortlist of round key
candidates can be obtained according to the counters, which helps to give an
efficient key recovery of the master key.

The algorithm. In this algorithm, we guess the involved round key bits of k0
which are needed for verifying the input difference ρ. As the higher bits of both
k0 and k0 ≫ a affect the verification, more than s = n − nBIL − 1 bits of k0
are needed. In the following procedures, we guess these bits of k0 together with
kr+m if m = 4 and make counters for other involved round keys kr+2, kr+3. The
detailed procedures of Algorithm B are as follows.

1. Construct 2t pairs of twin structures (S, S′) in a way described in Equation 1.
Each structure has 2s plaintext-ciphertext pairs, where s = n − nBIL − 1.

2. Guess min{n − nBIL + a, n} bits of k0 and the full kr+m if m = 4. Do partial
encryptions and decryptions.
(a) Initialize counters for kr+2 and kr+3.
(b) For each pair of twin structures:

i. Store the data of one structure into a hash table according to the state
before the key addition of the second round and (xr+4⊕yr+4)[nFIL+b :
b] and look up the table with data from the other structure. There
will be 2s−nFIL−1 pairs of data meeting the input difference and the
(nFIL + 1)-bit fixed difference.

ii. For each pair, mount the 2-round attack to recover kr+2, kr+3 and
update the counters.

(c) Select 2ℓ (e.g., l < n) candidates for kr+2, kr+3 with top counters. Guess
kr+1 and test the correctness by trial encryptions.

If we set the number of right pairs to one, then 2t × 2s × p = 1, t + s = w, and
the data complexity is 2w+1, which is the same as that in Dinur’s attack. If we
want to have a higher success probability, we can increase the data complexity.
For the computation of success probability, we follow the formula in Selçuk’s
work [Sel08] (see Equation 7). However, for a convenient comparison of time
complexities between Algorithm B and Dinur’s attack, we simply let the data
complexity be the same (while we may trade the data for a higher success
probability in concrete applications). The memory complexity for storing data
and counters is D + 22n ≈ 22n, and the time complexity is dominated by step (b)
and (c). Specifically,

• DB = 2w+1 plaintexts;
• TB = 2(m−3)n+min{n−nBIL+a,n}+t(2s+1+2s−nFIL−1)+2(m−2)n+min{n−nBIL+a,n}+ℓ

encryptions, m = 3, 4;
• MB = 22n for counters.

17

As the number of candidate keys 2ℓ is flexible, it is reasonable to assume the
second term of TB is not dominant. Let us focus on the first term. We can see
that if nBIL is greater than the rotation number a, this attack is already more
efficient than Dinur’s attack in terms of time complexity.

Improvement. Note that the time complexities of step (i) and (ii) are 2s+1 and
2s−nFIL−1 under each guess, respectively, which are not balanced. A strategy to
balance them is to guess fewer key bits of k0. There are three types of bits in
k0: bits used once (bits in the red lines in Fig. 8), twice (bits in the blue line in
Fig. 8) and none for verifying ρ difference. Our strategy is to guess all the bits
that are used twice and partial bits that are used only once. Let us analyze case
by case.

Fig. 8: Guess bits of k0, where bits in the blue line are all guessed and y bits in the red
lines are guessed.

• When nBIL ≥ a, n−nBIL + a bits of k0 are needed. If we guess n−nBIL −a + y
bits of k0 with 0 ≤ y ≤ 2a, we will get a (n − nBIL − 2a + y − 1)-bit filter, i.e.,
an (s − 2a + y)-bit filter, instead of an s-bit filter. Now the time complexity
of step (ii) becomes 2s−nFIL−1+2a−y. Meanwhile, the number of guessed key
bits of k0 is reduced by 2a − y bits and the memory complexity is increased
by 22a−y.

- When 2a ≥ nFIL + 1, choose y = 2a − nFIL − 1, the advantage of time
complexity over Dinur’s attack is ad = nBIL − a + nFIL + 1.

- When 2a < nFIL + 1, choose y = 0, the advantage of time complexity over
Dinur’s attack is ad = nBIL + a.

• When nBIL < a, a full k0 is needed. If we guess n − 2nBIL + y bits of k0 with
0 ≤ y ≤ 2nBIL, we will get an (s−2nBIL +y)-bit filter, instead of an s-bit filter.
Now the time complexity of step (ii) becomes 2s−nFIL−1+2nBIL−y. Meanwhile,
the number of guessed key bits of k0 is reduced by 2nBIL − y bits and the
memory complexity is increased by 22nBIL−y.

- When 2nBIL ≥ nFIL + 1, choose y = 2nBIL − nFIL − 1, the advantage of
time complexity over Dinur’s attack is ad = nFIL + 1.

- When 2nBIL < nFIL + 1, choose y = 0, the advantage of time complexity
over Dinur’s attack is ad = 2nBIL.

18

The advantage of Algorithm B over Dinur’s attack in terms of the time complexity
is summarized in Table 5.

Table 5: Advantage of Algorithm B
nBIL ≥ a 2a ≥ nFIL + 1 y = 2a − nFIL − 1 ad = nBIL − a + nFIL + 1

2a < nFIL + 1 y = 0 ad = nBIL + a

nBIL < a 2nBIL ≥ nFIL + 1 y = 2nBIL − nFIL − 1 ad = nFIL + 1
2nBIL < nFIL + 1 y = 0 ad = 2nBIL

Example. We take the attack on SPECK128/256 as an example, as shown in
Table 6. In the attack a 19-round differential trail with probability 2−119 is used
where nBIL = 23, nFIL = 2. We mount attacks on 24 rounds using Algorithm B and
set the number of right pairs µ = 3 and let ℓ = 55 so that the success probability
is high (about 90% in the calculation). As can be seen the time complexity is
reduced by using Type-II structures and by taking nBIL, nFIL into account.

Table 6: Example of attacks using Algorithm B
Variants Split Prob. nBIL nFIL Data Time Mem. Ref
128/256 1+19+4 2−119 - - 2120 2248 222 [FWG+16]

2+19+3 2−119 23 2 2121.58 2231.58 2131 Alg. B

Experiment. Using Algorithm B, we try to mount a 13-round attack on
SPECK32/64 with a 8-round distinguisher. The result shows that the correct
key ranks high. We set µ = 2 and the highest counter is 6. Specifically, among
all possible keys, 16 values take this count, including the correct key.

4.3 Algorithm C Using Type-I and Type-II Structures
Suppose we have g output differences δi, i = 1, · · · , g, all of which lead to at least
nFIL forward inactive lower bits for the addition in the next round. Each output
difference δi corresponds to hi input differences, i.e., ρi,j → δi of probability
pi,j for j = 1, · · · , hi. Suppose all these input differences result in at least nBIL
backward inactive lower bits for the addition in the earlier round. Let∑

i,j

pi,j = p̂ = 2−ŵ, H = h1 + · · · + hg.

Suppose among the H input differences ρi,js, H ′ of them are linearly independent.
The goal is to attack 2 + r + (m − 1) rounds for m = 3, 4.

The algorithm. This algorithm is a combination of Algorithm A and B.

19

1. Construct 2t Type-I structures of 2H′ Type-II structures and get the cor-
responding ciphertexts. Each type-II structure has 2s plaintexts, where
s = n − nBIL − 1.

2. If nBIL ≥ a, guess n − nBIL − a + y bits of k0 with 0 ≤ y ≤ 2a; otherwise,
guess n − 2nBIL + y bits of k0 with 0 ≤ y ≤ 2nBIL. Guess the full kr+m if
m = 4. Do partial encryptions and decryptions.
(a) Initialize counters for kr+2, kr+3, and 2 × min{a, nBIL} − y bits of k0.
(b) For each Type-I structure, each input difference ρi,j and each output

difference δi, i = 1, · · · , g, j = 1, · · · , hi, there are 2hi−1 × 2H′−hi pairs
of twin structures.

i. For each pair of twin structures, store the data of one structure into a
hash table according to the state before the key addition of the second
round and (xr+m ⊕yr+m)[nFIL +b : b] and look up the table with data
from the other structure. Then, when nBIL ≥ a (resp. nBIL < a) there
will be 2s−nFIL−1+2a−y (resp. 2s−nFIL−1+2nBIL−y) pairs of data partly
meeting the input difference and the (nFIL + 1)-bit fixed difference.

ii. For each pair of data, mount the 2-round attack to recover kr+2, kr+3;
recover other involved bits of k0 by looking up a precomputed table5.
Update the counters accordingly.

(c) Select 2ℓ (e.g., ℓ < n) candidates with top counters. Guess kr+1 and test
the correctness by trial encryptions.

It takes 2t × 2H′ × 2s data. For a convenient comparison of time complexities
between Algorithm C and Dinur’s attack, we simply set the number of right pairs
to one. Then we have 2t × 2H′−1 × 2s ×

∑
i,j pi,j = 1 and thus H ′ + t + s = ŵ + 1.

However, we may trade the data for a higher success probability in attacks on
concrete applications. Assume nFIL is much smaller than s, which holds in general.
Then we can summarize the complexities of Algorithm C as follows.

• DC = 2ŵ+1 plaintexts;
• When nBIL ≥ a, TC = 2(m−3)n+n−nBIL−a+y × (2t × H × 2H′−1 × (2s+1 +

2s−nFIL−1+2a−y) + 2n+ℓ)) encryptions for m = 3, 4.
• If 2a ≥ nFIL + 1, TC = 2(m−2)n−(nBIL−a+nFIL+1) × (H

p̂ × 2 + 2n+ℓ).
MC = 22n+nFIL+1 for counters.

• If 2a < nFIL + 1, TC = 2(m−2)n−(nBIL+a) × (H
p̂ × 2 + 2n+ℓ).

MC = 22n+2a for counters.
• When nBIL < a, TC = 2(m−3)n+n−2nBIL+y × (2t × H × 2H′−1 × (2s+1 +

2s−nFIL−1+2nBIL−y) + 2n+ℓ)) encryptions form = 3, 4.
• If 2nBIL ≥ nFIL + 1, TC = 2(m−2)n−(nFIL+1) × (H

p̂ × 2 + 2n+ℓ).
MC = 22n+nFIL+1 for counters.

• If 2nBIL < nFIL + 1, TC = 2(m−2)n−2nBIL × (H
p̂ × 2 + 2n+ℓ).

MC = 22n+2nBIL for counters.

5 This precomputed table takes a small memory of 23×(2×min{a,nBIL}−y).

20

As Algorithm A, the data complexity is reduced. The total advantage of this
attack in time complexity over Dinur’s attack is the same as shown in Algorithm
B of Section 4.2.

Data and the probability of success. We can calculate the success probability
using Equation 7 as well. Notably, to have a competitive probability of success,
having one right pair in the counting based algorithm is usually not enough.
Therefore, in concrete attack we increase the data complexity by a factor µ to
µ × 2ŵ+1. We typically set µ = 3 to have a reasonable success probability. In
turn, this increases the data complexity, probably leading to a data complexity
higher than that of the Dinur’s attack.

Example. We take SPECK32/64 as an example. The best 9-round differential
trails of SPECK32 have a probability 2−30. Among them, a few have nBIL = 3,
nFIL = 3. Using Algorithm C, we set µ = 3 and let ℓ = 14. When 3 trails with
total probability 2−28.42 are used, the success probability of attack is about 66%.
When two more trails are added, the total probability of all 5 differential trails is
2−27.68, and the success probability is about 76%. The results of these attacks
are listed in Table 7.

Table 7: Example of attacks using Algorithm C
Variants Split #Trail(s) nBIL nFIL Data Time Mem. Ref

32/64 1+9+4 1 - - 231 263 222 [Din14]
2+9+3 3 3 3 231 260.58 236 Alg. C
2+9+3 5 2 3 230.26 260.58 236 Alg. C

Experiment. We mount a 10-round attack on SPECK32/64 using Algorithm
C. In this experiment, we use four trails, the probability of which are all 2−13.
When we provide 214 message pairs, i.e, µ = 2, whose differences match the input
difference of the distinguisher, the results show that the highest counter is 5 and
the correct key does take this count. Among all possible keys, there are roughly
212 candidates whose counters are more than or equal to 2.

4.4 Discussions and Extensions

In this paper, we find a way to construct Type-II structures for SPECK. It allows
to add one more round before the differential distinguisher and leads to better
attacks in certain situations. From the application to SPECK, we can see that the
benefit of Type-II structures is weakened by the nonlinearity of the key schedule
and the rotation ≫ a in the round function. Thus, it is expected that the benefit
of Type-II structures may vary from cipher to cipher.

21

Limitation of Algorithm B and C. The algorithms using Type-II structures
can be applied to SPECK variants where m = 3, 4. When m = 2, the number of
pairs to be processed 2t+2s may exceed 2mn before guessing any round key. Note
this is usually the case since t + s is close to 2n in most attacks. Therefore, our
new attack is difficult to apply to the variants of SPECK with m = 2, namely,
when the block size equals the key size.

Extensions to variants of differential attacks. Besides the standard dif-
ferential cryptanalysis, the new technique for constructing Type-II structures
is potentially useful in various variants of differential attacks on ARX ciphers.
Such variants include boomerang/rectangle attacks, differential-linear attacks,
impossible differential attacks, etc.

Comparison with [BdST+22]. Different from plaintext structures, in [BdST+22]
the authors propose a meet-in-the-middle technique for improving key recovery
attacks on ciphers with slow diffusion and apply it to SPECK. They focus on the
bottom part of the cipher. Instead of checking the output difference δ of the
distinguisher, they propagate δ forward for some rounds and build a table for
storing (almost) all possible differences. Then they guess the round keys of the
last rounds, decrypt to the meeting point and check if the obtained intermediate
difference falls in the table. This technique helps to reduce the time complexity
of attacks on SPECK32 and SPECK64.

5 Applications to SPECK

In this section, we apply the three new algorithms proposed in the previous
section to key recovery attacks of SPECK. Before we mount key recovery attacks
on SPECK, we need to prepare suitable differentials or differential trails for these
algorithms so that better attacks can be realized. Roughly, high-probability
differential trails or differentials that have large nBIL, nFIL are desirable. With this
in mind, we reuse the SAT-based method [SWW21], which is briefly described in
Appendix B, for searching good differential trails for SPECK. In the following, we
provide information on the trails we find and present new attacks on all variants
of SPECK.

5.1 New Differential Trails and Differentials
In this subsection, we find suitable differential trails and differentials for each
algorithm separately. In a concrete attack, the underlying distinguisher may
be composed of a single trail/differential or multiple trails/differentials. When
multiple trails/differentials are used, we may select different sets of trails or
differentials to mount better attacks. To make it clear which distinguisher is used
in the attack, we label each distinguisher with an ID.

For Algorithm A, we aim to find all differential trails and differentials with
the best probability. However, for 2n > 64, the search becomes time-consuming
and we can only find some good ones. The results are displayed in Table 8.

22

Table 8: Differential trails and differentials of SPECK for Algorithm A, where ‘Number’
means the number of trails/differentials

Versions Rnds Trails or Differentials Number
∑

pi ID
32 9 Trails 15 2−26.09 1
48 11 Trails 3 2−43.42 2

12 Differentials 2 2−45.78 3
64 15 Trails 4 2−60 4

15 Differentials 4 2−58.91 5
96 16 Trails 2 2−86 6

17 Differentials 6 2−92.17 7
128 19 Trails 7 2−117 8

20 Differentials 6 2−121.37 9

For Algorithm B, we search for single trails and differentials of SPECK, whose
probability and nBIL, nFIL are as large as possible. We summarize the trails and
differentials we obtain in Table 9.

Table 9: Differential trails and differentials of SPECK for Algorithm B
Versions Rnds Trail or Differential Prob. nBIL nFIL ID

32 9 Trail 2−30 3 3 10
10 Differential 2−30.39 2 2 11

48 11 Trail 2−46 11 7 12
12 Differential 2−46.78 0 7 13

64 15 Trail 2−62 5 2 14
15 Differential 2−60.53 5 2 15

96 16 Trail 2−87 7 0 16
16 Trail 2−92 15 0 17
17 Differential 2−93.98 7 2 18

128 19 Trail 2−119 23 2 19
20 Differential 2−123.17 23 0 20

For Algorithm C, we form different sets of trails/differentials from the single
trails/differentials we obtained for Algorithm B, so that the average probability
and nBIL, nFIL are as large as possible. The results are shown in Table 10.

23

Table 10: New characteristics and differentials for Algorithm C, where ‘Number’ means
the number of trails/differentials

Versions Rnds Trails or Differentials Number
∑

pi nBIL nFIL ID
32 8 Trails 10 2−21.68 3 3 21

9 Trails 5 2−27.68 2 3 22
48 11 Trails 2 2−45.42 11 7 23

12 Differentials 6 2−45.89 3 2 24
64 15 Trails 11 2−59.30 2 3 25

15 Differentials 11 2−58.24 2 3 26
96 16 Trails 6 2−85.19 7 0 27

17 Differentials 23 2−91.03 7 2 28
128 19 Trails 6 2−117.19 23 2 29

20 Differentials 6 2−121.37 23 0 30

5.2 Summary of Results

In this subsection, we mount key recovery attacks on SPECK by applying the new
algorithms in Section 4 using differential distinguishers in Table 8, 9 and 10.

The results are summarized in Table 11 and the comparison to the related
works is presented in Table 1.

Table 11: All improved attacks using our new Algorithm

Variants Split ID Prob. nBIL,nFIL Data Time Mem. Method
32/64 2+8+3 21 2−21.68 3,3 224.26 255.58 236 Alg. C

1+9+4 1 2−26.09 - 227.09 263 222 Alg. A
2+9+3 22 2−27.68 2,3 230.26 260.58 236 Alg. C

48/72 1+11+3 2 2−43.42 - 244.42 270 222 Alg. A
2+11+2 23 2−45.42 11,7 248 262 256 Alg. C
1+12+3 3 2−45.78 - 246.78 271.78 222 Alg. A

48/96 1+11+4 2 2−43.42 - 244.42 294 222 Alg. A
2+11+3 23 2−45.42 11,7 248 286 256 Alg. C
1+12+4 3 2−45.78 - 246.78 295.78 222 Alg. A

64/96 1+15+3 4 2−60 - 261 295 222 Alg. A
1+15+3 5 2−58.91 - 259.91 293.91 222 Alg. A
2+15+2 15 2−60.53 5,2 263.11 292.11 267 Alg. B
2+15+2 25 2−59.30 2,3 261.88 293.34 268 Alg. C
2+15+2 26 2−58.24 2,3 260.82 292.28 268 Alg. C

64/128 1+15+4 4 2−60 - 261 2127 222 Alg. A
1+15+4 5 2−58.91 - 259.91 2125.91 222 Alg. A
2+15+3 15 2−60.53 5,2 263.11 2124.11 267 Alg. B
2+15+3 25 2−59.30 2,3 261.88 2125.34 268 Alg. C
2+15+3 26 2−58.24 2,3 260.82 2124.28 268 Alg. C

96/96 1+16+2 6 2−86 - 287 288 222 Alg. A
1+17+2 7 2−92.17 - 293.17 295.75 222 Alg. A

Continued on next page

24

Table 11 – continued from previous page
Variants Split ID Prob. nBIL,nFIL Data Time Mem. Method
96/144 1+16+3 6 2−86 - 287 2136 222 Alg. A

2+16+2 16 2−87 7,0 289.58 2136.58 297 Alg. B
2+16+2 17 2−92 15,0 294.58 2134.58 297 Alg. B
2+16+2 27 2−85.19 7,0 287.77 2137.35 297 Alg. C
1+17+3 7 2−92.17 - 293.17 2143.75 222 Alg. A
2+17+2 28 2−91.03 7,2 293.61 2143.13 299 Alg. C

128/128 1+19+2 8 2−117 - 2118 2120.81 222 Alg. A
1+20+2 9 2−121.37 - 2122.37 2124.95 222 Alg. A

128/192 1+19+3 8 2−117 - 2118 2184.81 222 Alg. A
2+19+2 19 2−119 23,2 2121.58 2167.58 2131 Alg. B
2+19+2 29 2−117.19 23,2 2119.77 2168.35 2131 Alg. C
1+20+3 9 2−121.37 - 2122.37 2188.95 222 Alg. A
2+20+2 20 2−123.17 23,0 2125.75 2173.75 2129 Alg. B
2+20+2 30 2−121.37 23,0 2123.95 2174.53 2129 Alg. C

128/256 1+19+4 8 2−117 - 2118 2248.81 222 Alg. A
2+19+3 19 2−119 23,2 2121.58 2231.58 2131 Alg. B
2+19+3 29 2−117.19 23,2 2119.77 2232.35 2131 Alg. C
1+20+4 9 2−121.37 - 2122.37 2252.95 222 Alg. A
2+20+3 20 2−123.17 23,0 2125.75 2237.75 2129 Alg. B
2+20+3 30 2−121.37 23,0 2123.95 2238.53 2129 Alg. C

Now we highlight some features of the results shown in Table 11. Algorithm
A is used to attack all variants while Algorithm B and C are applied to variants
with m = 3, 4. We use proper differentials for reduced SPECK with the largest
number of rounds that can be attacked and for SPECK reduced to fewer rounds,
we use differential trails. When we use Algorithm B and C which are based on
the counting method, in order to have a reasonable success probability, we set
the number of right pairs to a larger value than the one used in the enumerating
method of Dinur’s attack and Algorithm A. This increases the data complexity
and the time complexity by a factor. For distinguishers with small signal-to-noise
ratio, e.g., the ones for SPECK32 and SPECK48, there is no advantage if we use
Algorithm B. As a result, Algorithm A and C, which uses multiple trails or
differentials, give better results in most cases.

Note that the results of Algorithm A achieve the goal of reducing the data
complexity when compared with previous attacks. The aims of using Algorithm B
are to make use of Type-II structure and reduce the time complexity. Algorithm
C combines the ideas of Algorithm A and B and helps to improve the data
and time complexity at the same time. However, the memory complexity of the
attacks using Algorithm B and C might be higher than the previous attacks
which use Dinur’s algorithm.

6 Conclusion

In this paper, we study the properties of modular addition and find a method to
construct Type-II structures for SPECK. We also show that a combination of both

25

types of structures is possible for ARX ciphers. To demonstrate the effect of these
structures, we apply them to SPECK and obtain a series of improved attacks on all
variants of SPECK. Our results confirm that Type-II structures help to reduce the
time complexity and the combination of both types of structures helps to improve
the data and time complexity at the same time, as in the cryptanalysis of S-box-
based ciphers. Besides the standard differential cryptanalysis, we believe Type-II
structures can be potentially applied to other differential-like cryptanalysis for
ARX ciphers, such boomerang attacks, differential-linear attacks, impossible
attacks, etc.

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by
the National Natural Science Foundation of China (Grants 62022036, 62132008,
62202460).

References

ALLW14. Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
cryptanalysis of round-reduced SIMON and SPECK. In International
Workshop on Fast Software Encryption, pages 525–545. Springer, 2014.

BdST+22. Alex Biryukov, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko, and
Vesselin Velichkov. Meet-in-the-filter and dynamic counting with applications
to SPECK. Cryptology ePrint Archive, 2022.

BGL+23. Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing
differential-neural cryptanalysis. In Advances in Cryptology–ASIACRYPT
2022: 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022,
Proceedings, Part I, pages 318–347. Springer, 2023.

BK09. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In International conference on the theory and
application of cryptology and information security, pages 1–18. Springer,
2009.

BRV14. Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential analysis
of block ciphers SIMON and SPECK. In International Workshop on Fast
Software Encryption, pages 546–570. Springer, 2014.

BS90. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. In Advances in Cryptology - CRYPTO ’90, 10th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, volume 537, pages 2–21. Springer, 1990.

BS91. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of Cryptology, 4(1):3–72, 1991.

BS92. Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round
DES. In Annual international cryptology conference, pages 487–496. Springer,
1992.

BSS+13. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. cryptology eprint archive, 2013.

26

CWP12. Jiazhe Chen, Meiqin Wang, and Bart Preneel. Impossible differential crypt-
analysis of the lightweight block ciphers TEA, XTEA and HIGHT. In
Progress in Cryptology-AFRICACRYPT 2012: 5th International Conference
on Cryptology in Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings 5,
pages 117–137. Springer, 2012.

Din14. Itai Dinur. Improved differential cryptanalysis of round-reduced SPECK. In
International Conference on Selected Areas in Cryptography, pages 147–164.
Springer, 2014.

FWG+16. Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-based
automatic search algorithms for differential and linear trails for SPECK.
In International Conference on Fast Software Encryption, pages 268–288.
Springer, 2016.

Goh19. Aron Gohr. Improving attacks on round-reduced SPECK32/64 using deep
learning. In Annual International Cryptology Conference, pages 150–179.
Springer, 2019.

HHK+04. Seokhie Hong, Deukjo Hong, Youngdai Ko, Donghoon Chang, Wonil Lee, and
Sangjin Lee. Differential cryptanalysis of TEA and XTEA. In Information
Security and Cryptology-ICISC 2003: 6th International Conference, Seoul,
Korea, November 27-28, 2003. Revised Papers 6, pages 402–417. Springer,
2004.

KLT15. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the
SIMON block cipher family. IACR Cryptol. ePrint Arch., page 145, 2015.

Leu16. Gaëtan Leurent. Improved differential-linear cryptanalysis of 7-round
Chaskey with partitioning. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 344–371. Springer,
2016.

LKK+18. HoChang Lee, Seojin Kim, HyungChul Kang, Deukjo Hong, Jaechul Sung,
and Seokhie Hong. Calculating the approximate probability of differentials
for ARX-based cipher using SAT solver. Journal of the Korea Institute of
Information Security & Cryptology, 28(1):15–24, 2018.

LLJW20. Zhengbin Liu, Yongqiang Li, Lin Jiao, and Mingsheng Wang. A new method
for searching optimal differential and linear trails in ARX ciphers. IEEE
Transactions on Information Theory, 67(2):1054–1068, 2020.

LM01. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differ-
ential properties of addition. In International Workshop on Fast Software
Encryption, pages 336–350. Springer, 2001.

LWR16. Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear
trails in ARX with applications to SPECK and Chaskey. In International
Conference on Applied Cryptography and Network Security, pages 485–499.
Springer, 2016.

MHL+02. Dukjae Moon, Kyungdeok Hwang, Wonil Lee, Sangjin Lee, and Jongin Lim.
Impossible differential cryptanalysis of reduced round XTEA and TEA. In
Fast Software Encryption: 9th International Workshop, FSE 2002 Leuven,
Belgium, February 4–6, 2002 Revised Papers 9, pages 49–60. Springer, 2002.

MP13. Nicky Mouha and Bart Preneel. Towards finding optimal differential char-
acteristics for ARX: Application to Salsa20. Cryptology ePrint Archive,
Paper 2013/328, 2013. https://eprint.iacr.org/2013/328.

MY92. Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext
attack of FEAL cipher. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 81–91. Springer, 1992.

27

https://eprint.iacr.org/2013/328

QUE19. SEPARATE DECISION QUEUE. CaDiCaL at the SAT race 2019. SAT
RACE 2019, page 8, 2019.

Sel08. Ali Aydın Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, 2008.

SHY16. Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of ARX block ciphers with application to SPECK and LEA. In
Australasian Conference on Information Security and Privacy, pages 379–
394. Springer, 2016.

Sin05. Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality con-
straints. In International conference on principles and practice of constraint
programming, pages 827–831. Springer, 2005.

SNC09. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers
to cryptographic problems. In International Conference on Theory and
Applications of Satisfiability Testing, pages 244–257. Springer, 2009.

SWW21. Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differen-
tial and linear characteristics with the SAT method. IACR Transactions on
Symmetric Cryptology, pages 269–315, 2021.

WFH+22. Senpeng Wang, Dengguo Feng, Bin Hu, Jie Guan, Tairong Shi, and Kai
Zhang. The simplest SAT model of combining matsui’s bounding conditions
with sequential encoding method. Cryptology ePrint Archive, 2022.

WW22. Feifan Wang and Gaoli Wang. Improved differential-linear attack with
application to round-reduced SPECK32/64. In International Conference on
Applied Cryptography and Network Security, pages 792–808. Springer, 2022.

A More Details of the Key Recovery Phase

A.1 The 2-Round Attack of Dinur’s Algorithm

As described in Section 2.3, the 2-round attack is to enumerate all the possible
round keys ki and ki+1 under which after the 2-round decryption the difference
of the pairs is equal to (∆xi, ∆yi), if we know an input difference (∆xi, ∆yi), an
output difference (∆xi+2, ∆yi+2) and the output pairs of the 2-round transforma-
tion. Since ki+1 = (yi+1 ⊞ (xi+1 ≫ a)) ⊕ xi+2 and ki = (yi ⊞ (xi ≫ a)) ⊕ xi+1,
the key point is to derive the values of xi and xi+1. To obtain xi and xi+1,
one needs to solve the following two differential equations of addition (DEA) in
sequel.

((xi+1 ⊕ ∆xi+1) ≫ a) ⊞ (yi+1 ⊕ ∆yi+1) = ((xi+1 ≫ a) ⊞ yi+1) ⊕ ∆xi+2, (3)
((xi ⊕ ∆xi) ≫ a) ⊞ (yi ⊕ ∆yi) = ((xi ≫ a) ⊞ yi) ⊕ ∆xi+1. (4)

This type of DEA has an average of two solutions. However, for almost any
value of (∆xi, ∆yi), a large part of ciphertext pairs lead to no solutions. Therefore,
to save time, a filtering process is needed before solving these two equations. As
proved in [LM01], a valid differential (α, β → γ) for addition should satisfy the
following equation.

eq(α ≪ 1, β ≪ 1, γ ≪ 1)(α ⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0, (5)
where eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z). (6)

28

This means checking whether the equation holds for the two addition given all
differences of the 2-round scheme. Using the filter, the complexity of the 2-round
attack can be optimized to less than 2 encryptions of SPECK, which was verified
by a lot of experiments on SPECK in [Din14] and we also confirmed this through
experiments. The memory complexity of this attack is calculated in terms of
bytes which is 222.

A.2 Success Probability

For differential attacks on SPECK, we use the formula in Selçuk’s work to
evaluate the success probability [Sel08], which is

Ps = Φ

(√
µSN − Φ−1(1 − 2−(nk−ℓ))√

SN + 1

)
, (7)

where µ is the number of right pairs, SN is the signal-to-noise ratio, nk is the
number of key bits involved in the key recovery phase, and 2ℓ is the size of the
short list of the key candidates.

B Search for Differential Trails and Differentials of SPECK

In this section, we present the SAT model for differential cryptanalysis of
ARX ciphers [SWW21] and give detailed information on differential trails.

In literature, Mouha and Preneel are the first to apply the SAT method to the
search of differential trails [MP13], where they only take ARX ciphers into account.
Before long, lots of works in search of characteristics based on SAT spring up,
including searching of differential and linear characteristics for the SIMON-like
round function [KLT15] and linear trails for ARX ciphers [LWR16]. Recently,
Wang et.al [WFH+22] proposed a new method based on SAT to accelerate the
trail search .

In this work, we also use the SAT method to search for trails of SPECK. In
reality, there are several operations modeled in SAT. For convenience, we only
give a brief description of how to model the nonlinear operation of SPECK, i.e.,
Modular Addition, and how to model the constraint of weight.

A detailed description of other operations can be found in [SWW21]. Finally,
we apply the above methods to our search of differential trails and differentials.

Modular addition [SWW21]. For the n-bit modular addition, let α and β be
the input variables, and γ be the output variable. Then, the differential (α, β, γ)

29

is valid if and only if the following equations hold:

αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1

0 ≤ i ≤ n − 2

αn−1 ⊕ βn−1 ⊕ γn−1 = 0

Since the modular addition is a non-linear operation, we also need to model
the probability of the operation. Generally, the probability will be represented
by the sum of weight ωi. The differential probability

∑n−2
i=0 ωi is valid if and only

if the following equations hold:

αi+1 ∨ γi+1 ∨ ωi = 1
βi+1 ∨ γi+1 ∨ ωi = 1
αi+1 ∨ βi+1 ∨ ωi = 1
αi+1 ∨ βi+1 ∨ γi+1 ∨ ωi = 1
αi+1 ∨ βi+1 ∨ γi+1 ∨ ωi = 1

 0 ≤ i ≤ n − 2

Sequential encoding method. In the search, we want to confine the weight of
the trail, i.e., the probability of the trail. This can be abstracted as the Boolean
cardinality constraint

∑n−1
j=0 xj ≤ k, where xj is the Boolean variable, and k is a

non-negative integer. However, this constraint can not easily be modeled into
CNF formulas. Fortunately, we can take the sequential encoding method [Sin05]
to eliminate this difficulty as [SWW21], where the constraint

∑n−1
j=0 xj ≤ k is

translated into the following CNF formulas:

x0 ∨ x0,0 = 1
x0,j = 1, 1 ≤ j ≤ k − 1
xi ∨ xi,0 = 1
xi−1,0 ∨ xi,0 = 1

xi ∨ xi−1,j−1 ∨ xi,j = 1
xi−1,j ∨ xi,j = 1

}
1 ≤ j ≤ k − 1

xi ∨ xi−1,k−1 = 1

1 ≤ i ≤ n − 2

xn−1 ∨ xn−2,k−1 = 1

(8)

30

In general, all bounding conditions can be replaced with an inequality con-
straint of the following form

e2∑
i=e1

xi ≤ m, (9)

where e1 ≥ 0, e2 ≤ n − 1, and m ≤ k. Based on the above, we can apply
Equation (8) to Equation (9) to model the bounding conditions.

In [SWW21], Sun et al. build the SAT model of bounding conditions without
claiming any new variable. They split the encoding problem into three different
cases as follows:

Case 1.
∑e2

j=e1
xj ≤ m with e1 = 0 and e2 < n − 1, this bounding condition can

be converted into the following CNF formulas:

xi ∨ xi−1,m−1 = 1, 1 ≤ i ≤ e2.

Case 2.
∑e2

j=e1
xj ≤ m with e1 > 0 and e2 < n − 1, this bounding condition can

be converted into the following CNF formulas:

xe1−1,j ∨ xe2,j+m = 1, 0 ≤ j ≤ k − m − 1.

Case 3.
∑e2

j=e1
xj ≤ m with e1 > 0 and e2 = n − 1, this bounding condition can

be converted into the following CNF formulas:

xe1−1,j ∨ xn−2,j+m = 1, 0 ≤ j ≤ k − m − 1,

xe1−1,j ∨ xn−1 ∨ xn−2,j+m−1 = 1, 0 ≤ j ≤ k − m.

Search for trails and differentials. For SPECK32/48/64, We use CaDiCaL [QUE19]
to search for the differential trails. As for the search of differentials, we fix the
input difference of the first round and the output difference of the last round
to search for all trails with probability larger than a threshold and sum up all
probabilities as the differential probability. In order to obtain all solutions to the
problem, we switch to another tool CryptoMiniSat [SNC09], while for the other
versions, other than the search strategy, the others are the same. We exploit the
heuristic methods as [SHY16] to improve the search efficiency. More specifically,
we split one long trail into two short trails, i.e, combining two trails to form a
long one. By these heuristic strategies can we obtain better trails and differentials.
For those trails and differentials that are applied to our attacks which are shown
in Table 1, we list them as below.

31

Table 12: Characteristics of ID:2
SPECK48

Round
Number 1 2 3

∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
0 001202 020002 0 080048 080800 0 0800c8 080800 0
1 000010 100000 3 400000 004000 3 400000 004000 3
2 000000 800000 1 000000 020000 1 000000 020000 1
3 800000 800004 0 020000 120000 1 020000 120000 1
4 808004 808020 2 120200 820200 3 120200 820200 3
5 8400a0 8001a4 4 821006 920002 5 821002 920006 4
6 608da4 608080 9 918216 018202 9 918236 018202 9
7 042003 002400 11 0c1080 000090 11 0c1080 000090 12
8 012020 000020 5 800480 800000 4 800480 800000 4
9 200100 200000 3 008004 008000 2 008004 008000 2
10 202001 202000 3 048080 008080 3 048080 008080 3
11 210020 200021 4 808400 848000 3 808400 848000 3∑

r weight 45 45 45

Table 13: Characteristics of ID:6
SPECK96

Round
Number 1 2

∆L ∆R weight ∆L ∆R weight
0 010420040000 000024000400 0 240004000009 010420040000 0
1 000120200000 000000202000 5 082020000000 000120200000 6
2 000001000000 000000010000 3 000900000000 000001000000 4
3 000000000000 000000080000 1 000008000000 000000000000 2
4 000000380000 000000780000 3 000000080000 000000080000 1
5 000000080800 000003c80800 7 000000080800 000000480800 2
6 000000480008 00001e084008 7 000000480008 000002084008 4
7 080006080808 0800f64a0848 9 0800fe080808 0800ee4a0848 12
8 0007b2400040 400000104200 18 000772400040 400000104200 21
9 000000820200 000000001202 10 000000820200 000000001202 11
10 000000009000 000000000010 4 000000009000 000000000010 4
11 000000000080 000000000000 2 000000000080 000000000000 2
12 800000000000 800000000000 0 800000000000 800000000000 0
13 808000000000 808000000004 1 808000000000 808000000004 1
14 800080000004 840080000020 3 800080000004 840080000020 3
15 808080800020 a08480800124 5 808080800020 a08480800124 5
16 800400008124 842004008801 9 800400008124 842004008801 9∑

r weight 87 87

32

Table 14: Characteristics of ID:8
SPECK128

Number Round ∆L ∆R weight

1

0 0124000400000010 0801042004000000 0
1 0800202000000000 4808012020000000 7
2 4800010000000000 0840080100000002 6
3 0808080000000006 4a08480800000016 7
4 4000400000000032 1042004000000080 12
5 0202000000000080 8012020000000480 7
6 0010000000000480 0080100000002084 5
7 8080000000006080 84808000000164a0 6
8 0400000000032400 2004000000080104 11
9 2000000000080020 2020000000480801 7
10 0000000000480001 0100000002084008 6
11 000000000e080808 080000001e4a0848 8
12 00000000f2400040 4000000000104200 15
13 0000000000820200 0000000000001202 8
14 0000000000009000 0000000000000010 4
15 0000000000000080 0000000000000000 2
16 8000000000000000 8000000000000000 0
17 8080000000000000 8080000000000004 1
18 8000800000000004 8400800000000020 3
19 8080808000000020 a084808000000124 5∑

weight 120
Note: the remaing 6 trails are the same as Characteristics of ID: 35

33

Table 15: Characteristics of ID:22
SPECK32

Round
Number 1 2 3 4

∆L ∆R weight ∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
0 7458 b0f8 0 7c58 b0f8 0 1488 1008 0 7448 b0f8 0
1 01e0 c202 5 01e0 c202 5 0021 4001 4 01e0 c202 5
2 020f 0a04 5 020f 0a04 5 0601 0604 4 020f 0a04 5
3 2800 0010 5 2800 0010 5 1800 0010 6 2800 0010 5
4 0040 0000 2 0040 0000 2 0040 0000 3 0040 0000 2
5 8000 8000 0 8000 8000 0 8000 8000 0 8000 8000 0
6 8100 8102 1 8100 8102 1 8100 8102 1 8100 8102 1
7 8000 840a 2 8000 840a 2 8000 840a 2 8000 840a 2
8 850a 9520 4 850a 9520 4 850a 9520 4 850a 9520 4
9 802a d4a8 6 802a d4a8 6 802a d4a8 6 802a d4a8 6∑

r weight 30 30 30 30
(continued)

Table 15: (continued)
SPECK32

Round
Number 5

∆L ∆R weight
0 7c48 b0f8 0
1 01e0 c202 5
2 020f 0a04 5
3 2800 0010 5
4 0040 0000 2
5 8000 8000 0
6 8100 8102 1
7 8000 840a 2
8 850a 9520 4
9 802a d4a8 6∑

r weight 30

34

Table 16: Characteristics of ID:25
SPECK64

Round
Number 1 2 3

∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
0 92400040 40104200 0 924000c0 40104200 0 96400040 40104200 0
1 00820200 00001202 6 00820200 00001202 6 00820200 00001202 7
2 00009000 00000010 4 00009000 00000010 4 00009000 00000010 4
3 00000080 00000000 2 00000080 00000000 2 00000080 00000000 2
4 80000000 80000000 0 80000000 80000000 0 80000000 80000000 0
5 80800000 80800004 1 80800000 80800004 1 80800000 80800004 1
6 80008004 84008020 3 80008004 84008020 3 80008004 84008020 3
7 80808060 a0848164 6 80808060 a0848164 6 80808060 a0848164 6
8 00040f24 04200401 13 00040f24 04200401 13 00040f24 04200401 13
9 20200008 01202000 8 20200008 01202000 8 20200008 01202000 8
10 09000000 00010000 4 09000000 00010000 4 09000000 00010000 4
11 00080000 00000000 2 00080000 00000000 2 00080000 00000000 2
12 00000800 00000800 1 00000800 00000800 1 00000800 00000800 1
13 00000808 00004808 2 00000808 00004808 2 00000808 00004808 2
14 08004800 08020840 4 08004800 08020840 4 08004800 08020840 4
15 080a0808 481a4a08 6 080a0808 481a4a08 6 080a0808 481a4a08 6∑

r
weight 62 62 63

Table 16: Characteristics of ID:25
SPECK64

Round
Number 4 5 6

∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
0 b2400040 40104200 0 b24000c0 40104200 0 92440040 40104200 0
1 00820200 00001202 7 00820200 00001202 7 00820200 00001202 7
2 00009000 00000010 4 00009000 00000010 4 00009000 00000010 4
3 00000080 00000000 2 00000080 00000000 2 00000080 00000000 2
4 80000000 80000000 0 80000000 80000000 0 80000000 80000000 0
5 80800000 80800004 1 80800000 80800004 1 80800000 80800004 1
6 80008004 84008020 3 80008004 84008020 3 80008004 84008020 3
7 80808060 a0848164 6 80808060 a0848164 6 80808060 a0848164 6
8 00040f24 04200401 13 00040f24 04200401 13 00040f24 04200401 13
9 20200008 01202000 8 20200008 01202000 8 20200008 01202000 8
10 09000000 00010000 4 09000000 00010000 4 09000000 00010000 4
11 00080000 00000000 2 00080000 00000000 2 00080000 00000000 2
12 00000800 00000800 1 00000800 00000800 1 00000800 00000800 1
13 00000808 00004808 2 00000808 00004808 2 00000808 00004808 2
14 08004800 08020840 4 08004800 08020840 4 08004800 08020840 4
15 080a0808 481a4a08 6 080a0808 481a4a08 6 080a0808 481a4a08 6∑

r
weight 63 63 63

35

Table 16: Characteristics of ID:25
SPECK64

Round
Number 7 8 9

∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
0 924400c0 40104200 0 92c000c0 40104200 0 964000c0 40104200 0
1 00820200 00001202 7 00820200 00001202 7 00820200 00001202 7
2 00009000 00000010 4 00009000 00000010 4 00009000 00000010 4
3 00000080 00000000 2 00000080 00000000 2 00000080 00000000 2
4 80000000 80000000 0 80000000 80000000 0 80000000 80000000 0
5 80800000 80800004 1 80800000 80800004 1 80800000 80800004 1
6 80008004 84008020 3 80008004 84008020 3 80008004 84008020 3
7 80808060 a0848164 6 80808060 a0848164 6 80808060 a0848164 6
8 00040f24 04200401 13 00040f24 04200401 13 00040f24 04200401 13
9 20200008 01202000 8 20200008 01202000 8 20200008 01202000 8
10 09000000 00010000 4 09000000 00010000 4 09000000 00010000 4
11 00080000 00000000 2 00080000 00000000 2 00080000 00000000 2
12 00000800 00000800 1 00000800 00000800 1 00000800 00000800 1
13 00000808 00004808 2 00000808 00004808 2 00000808 00004808 2
14 08004800 08020840 4 08004800 08020840 4 08004800 08020840 4
15 080a0808 481a4a08 6 080a0808 481a4a08 6 080a0808 481a4a08 6∑

r
weight 63 63 63

Table 16: Characteristics of ID:25
SPECK64

Round
Number 10 11

∆L ∆R weight ∆L ∆R weight
0 92c00040 40104200 0 09240004 04010420 0
1 00820200 00001202 7 00082020 20000120 6
2 00009000 00000010 4 00000900 00000001 4
3 00000080 00000000 2 00000008 00000000 2
4 80000000 80000000 0 08000000 08000000 1
5 80800000 80800004 1 08080000 48080000 2
6 80008004 84008020 3 48000800 08400802 4
7 80808060 a0848164 6 08080806 4a084816 7
8 00040f24 04200401 13 400040f2 10420040 14
9 20200008 01202000 8 82020000 00120200 7
10 09000000 00010000 4 00900000 00001000 4
11 00080000 00000000 2 00008000 00000000 2
12 00000800 00000800 1 00000080 00000080 1
13 00000808 00004808 2 80000080 80000480 1
14 08004800 08020840 4 00800480 00802084 3
15 080a0808 481a4a08 6 8080a080 8481a4a0 5∑

r
weight 63 63

36

Table 17: Characteristics of ID:29
SPECK128

Round
Number 1 2

∆L/∆R weight ∆L/∆R weight

0 0124000400000000/
0801042004000000 0 0324000400000000/

0801042004000000 0

1 0800202000000000/
4808012020000000 6 0800202000000000/

4808012020000000 7

2 4800010000000000/
0840080100000002 6 4800010000000000/

0840080100000002 6

3 0808080000000006/
4a08480800000016 6 0808080000000006/

4a08480800000016 7

4 4000400000000032/
1042004000000080 10 4000400000000032/

1042004000000080 12

5 0202000000000080/
8012020000000480 9 0202000000000080/

8012020000000480 7

6 0010000000000480/
0080100000002084 6 0010000000000480/

0080100000002084 5

17 8080000000002080/
84808000000124a0 5 8080000000002080/

84808000000124a0 5

8 0400000000012440/
2004000000080144 9 0400000000012440/

2004000000080144 9

9 2000000000080220/
2020000000480801 9 2000000000080220/

2020000000480801 9

10 0000000000480001/
0100000002084008 7 0000000000480001/

0100000002084008 7

11 000000000e080808/
080000001e4a0848 8 000000000e080808/

080000001e4a0848 8

12 00000000f2400040/
4000000000104200 15 00000000f2400040/

4000000000104200 15

13 0000000000820200/
0000000000001202 8 0000000000820200/

0000000000001202 8

14 0000000000009000/
0000000000000010 4 0000000000009000/

0000000000000010 4

15 0000000000000080/
0000000000000000 2 0000000000000080/

0000000000000000 2

16 8000000000000000/
8000000000000000 0 8000000000000000/

8000000000000000 0

17 8080000000000000/
8080000000000004 1 8080000000000000/

8080000000000004 1

18 8000800000000004/
8400800000000020 3 8000800000000004/

8400800000000020 3

19 8080808000000020/
a084808000000124 5 8080808000000020/

a084808000000124 5∑
r

weight 119 120

37

Table 17: Characteristics of ID:29
SPECK128

Round
Number 3 4

∆L/∆R weight ∆L/∆R weight

0 0124000c00000000/
0801042004000000 0 0124400400000000/

0801042004000000 0

1 0800202000000000/
4808012020000000 7 0800202000000000/

4808012020000000 7

2 4800010000000000/
0840080100000002 6 4800010000000000/

0840080100000002 6

3 0808080000000006/
4a08480800000016 7 0808080000000006/

4a08480800000016 7

4 4000400000000032/
1042004000000080 12 4000400000000032/

1042004000000080 12

5 0202000000000080/
8012020000000480 7 0202000000000080/

8012020000000480 7

6 0010000000000480/
0080100000002084 5 0010000000000480/

0080100000002084 5

17 8080000000006080/
84808000000164a0 6 8080000000002080/

84808000000124a0 5

8 0400000000032400/
2004000000080104 11 0400000000012440/

2004000000080144 9

9 2000000000080020/
2020000000480801 7 2000000000080220/

2020000000480801 9

10 0000000000480001/
0100000002084008 6 0000000000480001/

0100000002084008 7

11 000000000e080808/
080000001e4a0848 8 000000000e080808/

080000001e4a0848 8

12 00000000f2400040/
4000000000104200 15 00000000f2400040/

4000000000104200 15

13 0000000000820200/
0000000000001202 8 0000000000820200/

0000000000001202 8

14 0000000000009000/
0000000000000010 4 0000000000009000/

0000000000000010 4

15 0000000000000080/
0000000000000000 2 0000000000000080/

0000000000000000 2

16 8000000000000000/
8000000000000000 0 8000000000000000/

8000000000000000 0

17 8080000000000000/
8080000000000004 1 8080000000000000/

8080000000000004 1

18 8000800000000004/
8400800000000020 3 8000800000000004/

8400800000000020 3

19 8080808000000020/
a084808000000124 5 8080808000000020/

a084808000000124 5∑
r

weight 120 120

38

Table 17: Characteristics of ID:29

SPECK128

Round
Number 5 6

∆L/∆R weight ∆L/∆R weight

0 012c000400000000/
0801042004000000 0 0164000400000000/

0801042004000000 0

1 0800202000000000/
4808012020000000 7 0800202000000000/

4808012020000000 7

2 4800010000000000/
0840080100000002 6 4800010000000000/

0840080100000002 6

3 0808080000000006/
4a08480800000016 7 0808080000000006/

4a08480800000016 7

4 4000400000000032/
1042004000000080 12 4000400000000032/

1042004000000080 12

5 0202000000000080/
8012020000000480 7 0202000000000080/

8012020000000480 7

6 0010000000000480/
0080100000002084 5 0010000000000480/

0080100000002084 5

7 8080000000006080/
84808000000164a0 6 8080000000006080/

84808000000164a0 6

8 0400000000032400/
2004000000080104 11 0400000000032400/

2004000000080104 11

9 2000000000080020/
2020000000480801 7 2000000000080020/

2020000000480801 7

10 0000000000480001/
0100000002084008 6 0000000000480001/

0100000002084008 6

11 000000000e080808/
080000001e4a0848 8 000000000e080808/

080000001e4a0848 8

12 00000000f2400040/
4000000000104200 15 00000000f2400040/

4000000000104200 15

13 0000000000820200/
0000000000001202 8 0000000000820200/

0000000000001202 8

14 0000000000009000/
0000000000000010 4 0000000000009000/

0000000000000010 4

15 0000000000000080/
0000000000000000 2 0000000000000080/

0000000000000000 2

16 8000000000000000/
8000000000000000 0 8000000000000000/

8000000000000000 0

17 8080000000000000/
8080000000000004 1 8080000000000000/

8080000000000004 1

18 8000800000000004/
8400800000000020 3 8000800000000004/

8400800000000020 3

19 8080808000000020/
a084808000000124 5 8080808000000020/

a084808000000124 5∑
r

weight 120 120

39

Table 18: The detailed differentials

ID Variant 2n Rounds Input difference output difference weight Number

3 48 12 0800c8,080800 840084,a00080 46.78 1
080048,080800 840084,a00080 46.78 2

26 64 15

924000c0,40104200 080a0808,481a4a08 61.04 1
92400040,40104200 080a0808,481a4a08 61.04 2
96400040,40104200 080a0808,481a4a08 62.05 3
b2400040,40104200 080a0808,481a4a08 62.05 4
b24000c0,40104200 080a0808,481a4a08 62.05 5
92440040,40104200 080a0808,481a4a08 62.00 6
924400c0,40104200 080a0808,481a4a08 62.00 7
92c000c0,40104200 080a0808,481a4a08 62.05 8
964000c0,40104200 080a0808,481a4a08 62.05 9
92c00040,40104200 080a0808,481a4a08 62.05 10
09240004,04010420 8080a080,8481a4a0 62.05 11

7 96 17

010c20040000, a0a000008880, 94.99 1
000024000400 81a02004c88c
0104200c0000, a0a000008880, 94.99 2
000024000400 81a02004c88c
010460040000, a0a000008880, 94.94 3
000024000400 81a02004c88c
014420040000, a0a000008880, 94.99 4
000024000400 81a02004c88c
030420040000, a0a000008880, 94.99 5
000024000400 81a02004c88c
010420040000, a0a000008880, 93.98 6
000024000400 81a02004c88c

28 96 17

00c420040000, a0a000008880, 96.00 1
000024000400 81a02004c88c
01c420040000, a0a000008880, 96.00 2
000024000400 81a02004c88c
010c200c0000, a0a000008880, 96.00 3
000024000400 81a02004c88c
010c20040000, a0a000008880, 94.99 4
000024000400 81a02004c88c
010C60040000, a0a000008880, 95.95 5
000024000400 81a02004c88c
0104e0040000, a0a000008880, 95.95 6
000024000400 81a02004c88c
0104200c0000, a0a000008880, 94.99 7
000024000400 81a02004c88c
010420040000, a0a000008880, 93.98 8
000024000400 81a02004c88c
0104201c0000, a0a000008880, 96.00 9
000024000400 81a02004c88c
0104600c0000, a0a000008880, 95.95 10
000024000400 81a02004c88c

Continued on next page

40

Table 18 – Continued from previous page
ID Variant 2n Rounds Input difference output difference weight Number

010460040000, a0a000008880, 94.94 11
000024000400 81a02004c88c
011c20040000, a0a000008880, 96.00 12
000024000400 81a02004c88c
014c20040000, a0a000008880, 96.00 13
000024000400 81a02004c88c
0144200c0000, a0a000008880, 96.00 14
000024000400 81a02004c88c
014420040000, a0a000008880, 94.99 15
000024000400 81a02004c88c
014460040000, a0a000008880, 95.95 16
000024000400 81a02004c88c
017c20040000, a0a000008880, 96.00 17
000024000400 81a02004c88c
030c20040000, a0a000008880, 96.00 18
000024000400 81a02004c88c
0304200c0000, a0a000008880, 96.00 19
000024000400 81a02004c88c
030420040000, a0a000008880, 94.99 20
000024000400 81a02004c88c
030460040000, a0a000008880, 95.95 21
000024000400 81a02004c88c
034420040000, a0a000008880, 96.00 22
000024000400 81a02004c88c
070420040000, a0a000008880, 96.00 23
000024000400 81a02004c88c

9 128 20

0124000c00000000, 8004000080000124, 124.19 1
0801042004000000 8420040080000801
0124000400000000, 8004000080000124, 123.17 2
0801042004000000 8420040080000801
0124400400000000, 8004000080000124, 124.15 3
0801042004000000 8420040080000801
0164000400000000, 8004000080000124, 124.19 4
0801042004000000 8420040080000801
0324000400000000, 8004000080000124, 124.19 5
0801042004000000 8420040080000801
012c000400000000, 8004000080000124, 124.19 6
0801042004000000 8420040080000801
0124400400000000, 8004000080000124, 124.15 1
0801042004000000 8420040080000801
0164000400000000, 8004000080000124, 124.19 2
0801042004000000 8420040080000801

30 128 20

0324000400000000, 8004000080000124, 124.19 3
0801042004000000 8420040080000801
012c000400000000, 8004000080000124 124.19 4
0801042004000000 8420040080000801
0124000c00000000, 8004000080000124, 124.19 5

Continued on next page

41

Table 18 – Continued from previous page
ID Variant 2n Rounds Input difference output difference weight Number

0801042004000000 8420040080000801
0124000400000000, 8004000080000124, 123.17 6
0801042004000000 8420040080000801

42

	Improved Differential Cryptanalysis on SPECK Using Plaintext Structures

