41 research outputs found

    A Stationary North-Finding Scheme for an Azimuth Rotational IMU Utilizing a Linear State Equality Constraint

    No full text
    The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically

    Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy

    No full text
    Equivalence ratio is one of the most significant parameters in combustion flow fields. In this paper, femtosecond laser-induced plasma spectroscopy (FLIPS) technique for instantaneous one-dimensional local equivalence ratio measurements were performed. By measuring the spatially resolved spectra of FLIPS, we found that the spectral peak area ratios of CH (431 nm)/N2 (337 nm), CH (431 nm)/N2 (357 nm), and CH (431 nm)/O (777 nm) can be utilized to achieve one-dimensional local equivalence ratio measurements. Among them, the CH peak at ~431 nm and the O peak at ~777 nm are strong enough to be used to achieve single-shot measurements, which is important to turbulent flow fields. Furthermore, systematic experiments were performed by using FLIPS in both laminar and turbulent flow fields. The FLIPS technique features the abilities of instantaneous one-dimensional quantitative measurements, high spatial resolution, and no Bremsstrahlung interference

    Is There a Better Source of Huperzine A than Huperzia serrata

    No full text

    Effect of water on the breakdown and dielectric response of polypropylene/nano aluminium nitride composites

    No full text
    The influence of water immersion and silane treatment on the AC breakdown and the complex dielectric response of polypropylene/nano-aluminium nitride (PP/nano-AlN) composites has been investigated. The as-received filler was examined to have a nanoscale particle distribution with a hexagonal shape and slight hydrolysation. Grafting the aluminium nitride with an octyl silane reduces the weight increase in samples filled with 10 wt% of aluminium nitride during water immersion by 3, from 0.29 to 0.09%. The results suggest that the AC breakdown strength and complex permittivity of “wet” composite samples are related to the silane treatment of the nanofiller. The AC breakdown strength of octyl silane-treated samples after 9 days of water immersion shows comparable results to the dry samples, while a reduction can be seen on non-treated samples. Although silane-treated samples still show an increased dielectric loss at low frequency after water immersion, a significant reduction in low-frequency dispersion of real and imaginary permittivity can be seen when compared to the non-treated composites. This indicates that significant gains can be obtained for PP/nano-AlN composites by suitable silane treatments

    Femtosecond laser-induced cyano chemiluminescence in methane-seeded nitrogen gas flows for near-wall velocimetry

    No full text
    We demonstrate a velocimetric technique based on femtosecond laser-induced cyano (CN) chemiluminescence (FLICC). High intensity emission originated from CN(B-X) fluorescence was observed in filaments generated by focusing a femtosecond laser in methane-seeded nitrogen gas flows. The emission is strong and can last for hundreds of microseconds with a proper methane concentration. FLICC was adopted for velocity measurements, and promising results were obtained for near-wall measurements

    Filamentary anemometry using femtosecond laser-extended electric discharge - FALED

    No full text
    We demonstrate a non-contact spatiotemporally resolved comprehensive method for gas flow velocity field measurement: Filamentary Anemometry using femtosecond Laser-extended Electric Discharge (FALED). A faint thin plasma channel was generated in ambient air by focusing an 800-nm laser beam of 45 fs, which was used to ignite a pulsed electric discharge between two electrodes separated over 10 mm. The power supplier provided a maximum voltage up to 5 kV and was operated at a burst mode with a current duration of less than 20 ns and a pulse-to-pulse separation of 40 μs. The laser-guided thin filamentary discharge plasma column was blowing up perpendicularly by an air jet placed beneath in-between the two electrodes. Although the discharge pulse was short, the conductivity of the plasma channel was observed to sustain much longer, so that a sequence of discharge filaments was generated as the plasma channel being blown up by the jet flow. The sequential bright thin discharge filaments can be photographed using a household camera to calculate the flow velocity distribution of the jet flow. For a direct comparison, a flow field measurement using FLEET [Michael, Appl. Opt. 50, 5158 (2011)] was also performed. The results indicate that the FALED technique can provide instantaneous nonintrusive flow field velocity measurement with good accuracy

    Reversing extinction in China's Père David's deer

    No full text
    Pere David's deer (Elaphurus davidianus) became extinct in the wild in China in the late 19th century, but after reintroduction three decades go. The population has grown more than 8000 individuals with at least 2420 living in the wild in China. A successful story

    Enhancement of femtosecond laser-induced plasma fluorescence using a nanosecond laser

    No full text
    We demonstrate the enhancement of femtosecond (fs) laser-induced filaments in air and nitrogen flow fields using a nanosecond (ns) laser. With the ns laser being imposed on the filaments, the length and the emission intensity of the filaments were largely increased. Temporally resolved spectra of the enhanced filaments were obtained. The results show that the ns laser enhanced the short-lifetime fluorescence of nitrogen, which comes from the transition processes of N 2 + (B 2 Σ u + - X 2 Σ g + ), N 2 (B 3 Π g - A 3 Σ u + ) and N 2 (C 3 Π u - B 3 Π g ). However, it had little effect on the long-lifetime chemiluminescence, which mainly comes from reactions such as N 2 (A 3 Σ u + ) + N 2 (A 3 Σ u + ) → N 2 (X 1 Σ g + , v = 0) + N 2 (B 3 Π g ). A possible explanation of this phenomenon is given, and this phenomenon might have potential applications in instantaneous one-dimensional measurements of various species in gas flow fields

    Data from: Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material

    No full text
    Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing the silicon microchannel plates (Si-MCPs) three dimensional (3D) ordered structure, monocrystalline MnMoO4 with a size of tens of micrometers and polycrystalline MnMoO4 nanoflakes are produced on the surface and sidewall of the nickel-coated Si-MCP, respectively. The MnMoO4 crystals ripen controllably forming polycrystalline nanoflakes with the lattice fringes of 0.542 nm corresponding to the (1 ̅11) plane on the sidewall. And these nanoflakes MnMoO4 shows apparent thermite performance which is rarely reported and represents MnMoO4 becomes a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO4
    corecore