2,334 research outputs found
Graphene-Based FET Detector for E. coli K12 Real-Time Monitoring and Its Theoretical Analysis
This paper presents a theoretical analysis for a graphene-based FET real-time detector of the target bacteria E. coli K12. The motivation for this study is to design a sensor device for detection of bacteria in food and water in order to guarantee food safety. Graphene is chosen as our material for sensor design, which has outstanding electrical, physical, and optical performance. In our sensor structure, graphene-based solution gate field effect transistor (FET) is the device model; fabrication and functionalization protocol are presented together in this paper. What is more, a real-time signal display system is the accompanied equipment for our designed biosensor device. In this system, the sensor bias current signal would change obviously when the target bacteria are attached to the sensor surface. And the bias current increases when the E. coli concentration increases. In the latter part, a theoretical interpretation of the sensor signal is to explain the bias current increasing after the E. coli K12 attachment.published_or_final_versio
General Quantum Key Distribution in Higher Dimension
We study a general quantum key distribution protocol in higher dimension. In
this protocol, quantum states in arbitrary () out of all
mutually unbiased bases in a d-dimensional system can be used for the key
encoding. This provides a natural generalization of the quantum key
distribution in higher dimension and recovers the previously known results for
and . In our investigation, we study Eve's attack by two slightly
different approaches. One is considering the optimal cloner for Eve, and the
other, defined as the optimal attack, is maximizing Eve's information. We
derive results for both approaches and show the deviation of the optimal cloner
from the optimal attack. With our systematic investigation of the quantum key
distribution protocols in higher dimension, one may balance the security gain
and the implementation cost by changing the number of bases in the key
encoding. As a side product, we also prove the equivalency between the optimal
phase covariant quantum cloning machine and the optimal cloner for the
quantum key distribution
A Novel Lateral Flow Assay Based on GoldMag Nanoparticles and Its Clinical Applications for Genotyping of MTHFR C677T Polymorphisms
Current techniques for single nucleotide polymorphisms (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticles (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amount from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1,721 individuals on the C677T genotypes. The concordance rate of the genotyping result detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in the laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes
Qinghai–tibetan plateau peatland sustainable utilization under anthropogenic disturbances and climate change
Often referred to as the “Third Pole,” China's Qinghai–Tibetan Plateau developed large amounts of peatland owing to its unique alpine environment. As a renewable resource, peat helps to regulate the climate as well as performing other important functions. However, in recent years, intensifying climate change and anthropogenic disturbances have resulted in peatland degradation and consequently made sustainable development of peatland more difficult. This review summarizes peatland ecological and economic functions, including carbon sequestration, biodiversity conservation, energy supplies, and ecotourism. It identifies climate change and anthropogenic disturbances as the two key factors attributing to peatland degradation and ecosystem carbon loss. Current problems in environmental degradation and future challenges in peatland management under the effects of global warming are also discussed and highlighted
Neutron star composition in strong magnetic fields
We study the problem of neutron star composition in the presence of a strong
magnetic field. The effects of the anomalous magnetic moments of both nucleons
and electrons are investigated in relativistic mean field calculations for a
-equilibrium system. Since neutrons are fully spin polarized in a large
field, generally speaking, the proton fraction can never exceed the field free
case. An extremely strong magnetic field may lead to a pure neutron matter
instead of a proton-rich matter.Comment: 12 pages, 3 postscript files include
Letter of Intent: Jinping Neutrino Experiment
Jinping Neutrino Experiment (Jinping) is proposed to significantly improve
measurements on solar neutrinos and geoneutrinos in China Jinping Laboratory -
a lab with a number of unparalleled features, thickest overburden, lowest
reactor neutrino background, etc., which identify it as the world-best
low-energy neutrino laboratory. The proposed experiment will have target mass
of 4 kilotons of liquid scintillator or water-based liquid scintillator, with a
fiducial mass of 2 kilotons for neutrino-electron scattering events and 3
kilotons for inverse-beta interaction events. A number of initial sensitivities
studies have been carried out, including on the transition phase for the solar
neutrinos oscillation from the vacuum to the matter effect, the discovery of
solar neutrinos from the carbon-nitrogen-oxygen (CNO) cycle, the resolution of
the high and low metallicity hypotheses, and the unambiguous separation on U
and Th cascade decays from the dominant crustal anti-electron neutrinos in
China.Comment: Proposal for the Jinping Neutrino Experimen
Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks
CuS nanocrystals are potential materials for developing low-cost solar energy conversion devices. Understanding the underlying dynamics of photoinduced carriers in CuS nanocrystals is essential to improve their performance in these devices. In this work, we investigated the photoinduced hole dynamics in CuS nanodisks (NDs) using the combination of transient optical (OTA) and X-ray (XTA) absorption spectroscopy. OTA results show that the broad transient absorption in the visible region is attributed to the photoinduced hot and trapped holes. The hole trapping process occurs on a subpicosecond time scale, followed by carrier recombination (~100 ps). The nature of the hole trapping sites, revealed by XTA, is characteristic of S or organic ligands on the surface of CuS NDs. These results not only suggest the possibility to control the hole dynamics by tuning the surface chemistry of CuS but also represent the first time observation of hole dynamics in semiconductor nanocrystals using XTA
Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive-compulsive disorder
Background: cognitive behavioural therapy (CBT), including exposure and ritual prevention, is a first-line treatment for obsessive-compulsive disorder (OCD), but few reliable predictors of CBT outcome have been identified. Based on research in animal models, we hypothesized that individual differences in basolateral amygdala-ventromedial prefrontal cortex (BLA-vmPFC) communication would predict CBT outcome in patients with OCD. Methods: we investigated whether BLA-vmPFC resting-state functional connectivity (rs-fc) predicts CBT outcome in patients with OCD. We assessed BLA-vmPFC rs-fc in patients with OCD on a stable dose of a selective serotonin reuptake inhibitor who then received CBT and in healthy control participants. Results: we included 73 patients with OCD and 84 healthy controls in our study. Decreased BLA-vmPFC rs-fc predicted a better CBT outcome in patients with OCD and was also detected in those with OCD compared with healthy participants. Additional analyses revealed that decreased BLA-vmPFC rs-fc uniquely characterized the patients with OCD who responded to CBT. Limitations: we used a sample of convenience, and all patients were receiving pharmacological treatment for OCD. Conclusion: in this large sample of patients with OCD, BLA-vmPFC functional connectivity predicted CBT outcome. These results suggest that future research should investigate the potential of BLA-vmPFC pathways to inform treatment selection for CBT across patients with OCD and anxiety disorders
- …