39 research outputs found

    Effect of chitosan grafted polyethylenimine nanoparticles as a gene carrier on mesenchymal stem cells viability

    Get PDF
          This study discusses the effect of complexes of chitosan grafted polyethylenimine(Ch-PEI) with plasmid DNA on viability of mesenchymal stem cells(MSCs) derived from human marrow. Ch-PEI/pDNA nanoparticles were synthesized through the complex coacervation method using pIRES plasmid containing Green Fluorescent Protein (GFP) gene. To confirm the complexation, samples were run through an agarose gel. Human bone marrow mesenchymal stem cells were studied for the cytotoxicity of the nanoparticles by MTT assay. MTT results indicated Ch-PEI does not have any significant cytotoxicity compared with PEI and Lipofectamine2000 leading to 40% cytotoxicity. According to the results it seems that grafting chitosan with PEI improves the MSCs viability

    Biological and materials properties of various cholesterol based systems

    Get PDF
    Liposomes composed of cationic lipids have become very popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this review we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the head group of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar head group. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials

    Effect of Headgroup on DNA−Cationic Surfactant Interactions

    Get PDF
    The interaction behavior of DNA with different types of hydroxylated cationic surfactants has been studied. Attention was directed to how the introduction of hydroxyl substituents at the headgroup of the cationic surfactants affects the compaction of DNA. The DNA−cationic surfactant interaction was investigated at different charge ratios by several methods like UV melting, ethidium bromide exclusion, and gel electrophoresis. Studies show that there is a discrete transition in the DNA chain from extended coils (free chain) to a compact form and that this transition does not depend substantially on the architecture of the headgroup. However, the accessibility of DNA to ethidium bromide is preserved to a significantly larger extent for the more hydrophilic surfactants. This was discussed in terms of surfactant packing. Observations are interpreted to reflect that the surfactants with more substituents have a larger headgroup and therefore form smaller micellar aggregates; these higher curvature aggregates lead to a less efficient, “patch-like” coverage of DNA. The more hydrophilic surfactants also presented a significantly lower cytotoxicity, which is important for biotechnological applications

    Systemic linear polyethylenimine (L‐PEI)‐mediated gene delivery in the mouse

    Get PDF
    Background Several nonviral vectors including linear polyethylenimine(L‐PEI) confer a pronounced lung tropism to plasmid DNA when injected into the mouse tail vein in a nonionic solution. Methods and results We have optimized this route by injecting 50 µg DNA with excess L‐PEI (PEI nitrogen/DNA phosphate=10) in a large volume of 5% glucose (0.4 ml). In these conditions, 1–5% of lung cells were transfected (corresponding to 2 ng luciferase/mg protein), the other organs remaining essentially refractory to transfection (1–10 pg luciferase/mg protein).β‐Galactosidase histochemistry confirmed alveolar cells, including pneumocytes, to be the main target, thus leading to the puzzling observation that the lung microvasculature must be permeable to cationic L‐PEI/DNA particles of ca 60 nm. A smaller injected volume, premixing of the complexes with autologous mouse serum, as well as removal of excess free L‐PEI, all severely decreased transgene expression in the lung. Arterial or portal vein delivery did not increase transgene expression in other organs. Conclusions These observations suggest that effective lung transfection primarily depends on the injection conditions: the large nonionic glucose bolus prevents aggregation as well as mixing of the cationic complexes and excess free L‐PEI with blood. This may favour vascular leakage in the region where the vasculature is dense and fragile, i.e. around the lung alveoli. Cationic particles can thus reach the epithelium from the basolateral side where their receptors (heparan sulphate proteoglycans) are abundant

    Safety and Short-Term Toxicity of a Novel Cationic Lipid Formulation for Human Gene Therapy

    Full text link
    Overview summary Although several viral vectors have been widely applied to the treatment of human disease, the development of nonviral vectors is still in their infancy. In this report, a novel cationic lipid, DMRIE/DOPE, has been incorporated into the DNA–liposome formulation that improves transfection efficiencies and allows up to 1,000-fold higher concentrations of DNA to be administered in vivo. In this paper, the safety and toxicity of this formulation is described in two species, mice and pigs, suggesting that it may prove useful for human gene therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63224/1/hum.1993.4.6-781.pd

    アメリカ合衆国における遺伝子治療の動向

    Get PDF

    Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides

    Get PDF
    Association of a targeting ligand such as transferrin, or an endosome disrupting peptide such as GALA, with cationic liposome-DNA complexes (\u27lipoplexes\u27) results in a significant enhancement of transfection of several cell types. Although these strategies can overcome some of the barriers to gene delivery by lipoplexes, the mechanisms by which they actually enhance transfection is not known. In studies designed to establish the targeting specificity of transferrin, we found that apo-transferrin enhances transfection to the same extent as transferrin, indicating that internalization of the lipoplexes is mostly independent of transferrin receptors. These observations were reinforced by results obtained from competitive inhibition studies either by preincubating the cells with an excess of free ligand or with various \u27receptor-blocking\u27 lipoplexes. Transfection of cells in the presence of drugs that interfere with the endocytotic pathway provided additional insights into the mechanisms of gene delivery by transferrin- or GALA-lipoplexes. Our results indicate that transferrin-lipoplexes deliver transgenes by endocytosis primarily via a non-receptor-mediated mechanism, and that acidification of the endosomes is partially involved in this process
    corecore