820 research outputs found

    Evaluation Of Feasibility And Performance Of Foamed Fire-Resistant Coating Materials

    Get PDF
    A preliminary study found high-performance cement mortar, geopolymer mortar, and magnesium phosphate cement mortar (MPCM) have the potential as new fire-resistant materials. In this study, foam was added to these three fire-resistant materials to further improve their rheological, mechanical, and fire-resistant performance and reduce costs. Systematic design and experimental programs were conducted. The results showed the addition of foam enhanced workability, adhesiveness, and fire resistance, allowing the materials to withstand higher temperatures and further delay heat transfer. A mixture of 70% MPCM and 30% foam was identified as the optimum design, which could withstand 1000 °C with low heat transfer rates

    Trion Species-Resolved Quantum Beats in MoSe2

    Full text link
    Monolayer photonic materials offer a tremendous potential for on-chip optoelectronic devices. Their realization requires knowledge of optical coherence properties of excitons and trions that have so far been limited to nonlinear optical experiments carried out with strongly inhomogenously broadened material. Here we employ h-BN encapsulated and electrically gated MoSe2 to reveal coherence properties of trion-species directly in the linear optical response. Autocorrelation measurements reveal long dephasing times up to T2=1.16+-0.05 ps for positively charged excitons. Gate dependent measurements provide evidence that the positively-charged trion forms via spatially localized hole states making this trion less prone to dephasing in the presence of elevated hole carrier concentrations. Quantum beat signatures demonstrate coherent coupling between excitons and trions that have a dephasing time up to 0.6 ps, a two-fold increase over those in previous reports. A key merit of the prolonged exciton/trion coherences is that they were achieved in a linear optical experiment, and thus are directly relevant to applications in nanolasers, coherent control, and on-chip quantum information processing requiring long photon coherence.Comment: 21 pages, 6 figures, 2 SOI figure

    A Microbial Link between Elevated CO2 and Methane Emissions that is Plant Species-Specific

    Get PDF

    Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2

    Get PDF
    Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this invasion (INV) region is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein

    VIRTUAL KEYBOARD WITH INTEGRATED SUGGESTION FEATURES

    Get PDF
    A computing device may present a virtual keyboard with integrated suggestion features that improve the speed and efficiency of correcting typographical errors (e.g., spelling and/or grammar errors) or text otherwise warranting correction. The virtual keyboard may be configured to present one or more suggestions for correcting typographical errors (also referred to herein as “typos”) identified by the computing device. The computing device may display a virtual keyboard graphical user interface (GUI) that includes one or more suggestions for correcting each typo in a suggestion strip GUI. The suggestion strip GUI may be a contiguous region in line with and/or directly above the virtual keyboard rather than within a graphical element that overlays a portion of the virtual keyboard GUI and visually obscures the virtual keyboard GUI. In some instances, the suggested correction or an explanation of the error may be included within the virtual keyboard GUI in place of the keyboard itself or a combination thereof (e.g., a suggested correction within the suggestion strip GUI and an explanation of the error in place of the virtual keyboard GUI)

    Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis

    Get PDF
    Atherosclerotic lesions develop in regions of arterial curvature and branch points, which are exposed to disturbed blood flow and have unique gene expression patterns. The cellular and molecular basis for atherosclerosis susceptibility in these regions is not completely understood. In the intima of atherosclerosis-predisposed regions of the wild-type C57BL/6 mouse aorta, we quantified increased expression of several proinflammatory genes that have been implicated in atherogenesis, including vascular cell adhesion molecule–1 (VCAM-1) and a relative abundance of dendritic cells, but only occasional T cells. In contrast, very few intimal leukocytes were detected in regions resistant to atherosclerosis; however, abundant macrophages, including T cells, were found throughout the adventitia (Adv). Considerably lower numbers of intimal CD68+ leukocytes were found in inbred atherosclerosis-resistant C3H and BALB/c mouse strains relative to C57BL/6 and 129; however, leukocyte distribution throughout the Adv of all strains was similar. The predominant mechanism for the accumulation of intimal CD68+ cells was continued recruitment of bone marrow–derived blood monocytes, suggestive of low-grade chronic inflammation. Local proliferation of intimal leukocytes was low. Intimal CD68+ leukocytes were reduced in VCAM-1–deficient mice, suggesting that mechanisms of leukocyte accumulation in the intima of normal aorta are analogous to those in atherosclerosis

    Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Get PDF
    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications

    IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma

    Get PDF
    Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC
    • …
    corecore