6 research outputs found

    Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice

    Get PDF
    Metabolism of nicotine to inactive cotinine by hepatic enzyme CYP2A6 is the principal pathway by which active nicotine is removed from circulation. We therefore hypothesized that inhibition of mouse CYP2A5, the ortolog of human CYP2A6, by methoxsalen (8-methoxypsoralen) alter dependence-related behaviors of nicotine in the mouse. Conditioned place preference (CPP) test was used to assess the appetitive reward-like properties and precipitated nicotine withdrawal to assess physical (somatic and hyperalgesia) and affective (anxiety-related behaviors) measures. The nicotine plasma levels were also measured with or without methoxsalen pretreatment. Methoxsalen (15 and 30 mg/kg, intraperitoneally) pretreatment enhanced nicotine-induced preference in mice (p < 0.05). However, there was a lack of enhancement of nicotine in the CPP test after the highest dose of the CYP-2A5 inhibitor. Similarly to the CPP results, repeated administration of methoxsalen increased the intensity of mecamylamine-precipitated withdrawal signs. The potentiation of nicotine preference and withdrawal intensity by methoxsalen was accompanied by significant increase in nicotine plasma levels in mice (p < 0.05). Finally, methoxsalen enhanced the ability of a very low dose of nicotine (0.05 mg/kg) to reverse withdrawal signs in mice undergoing spontaneous withdrawal after chronic nicotine infusion (p < 0.05). In conclusion, inhibition of nicotine metabolism by methoxsalen alters the behavioral effects of nicotine in the mouse. Combining CYP2A6 inhibitors with low dose nicotine replacement therapies may have a beneficial role in smoking cessation because it will decrease the drug elimination rate and maintain plasma and brain nicotine levels.United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (DA-05274)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R01DA032246) (P30DA033934) (P50DA005274

    CYP2B6 and Bupropion’s Smoking-Cessation Pharmacology: The Role of Hydroxybupropion

    No full text
    Bupropion is indicated to promote smoking cessation. Animal studies suggest that bupropion’s major metabolite hydroxybupropion can mediate bupropion’s pharmacologic activity. We measured plasma bupropion and metabolite levels in a double-blind, placebo controlled, randomized smoking cessation trial. Among the treatment adherent individuals, higher hydroxybupropion concentrations (per ”g/mL) resulted in better smoking cessation outcomes (Week 3, 7 and 26 OR=2.82, 2.96 and 2.37, P=0.005–0.040), this was not observed with bupropion levels (OR=1.00–1.03, P=0.59–0.90). Genetic variation in CYP2B6, the enzyme that metabolizes bupropion to hydroxybupropion, was identified as a significant source of variability in hydroxybupropion formation. Our data indicate that hydroxybupropion contributes to the pharmacologic effects of bupropion for smoking cessation, and that variability in response to bupropion treatment is related to variability in CYP2B6-mediated hydroxybupropion formation. These findings suggest dosing bupropion to achieve a hydroxybupropion level of 0.7 ”g/ml or increasing bupropion dose for CYP2B6 slow metabolizers, could improve bupropion’s cessation outcomes

    Alaska Native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation

    No full text
    Nicotine, the psychoactive ingredient in tobacco, is metabolically inactivated by CYP2A6 to cotinine. CYP2A6 also activates procarcinogenic tobacco-specific nitrosamines (TSNA). Genetic variation in CYP2A6 is known to alter smoking quantity and lung cancer risk in heavy smokers. Our objective was to investigate how CYP2A6 activity influences tobacco consumption and procarcinogen levels in light smokers and smokeless tobacco users. Cigarette smokers (n = 141), commercial smokeless tobacco users (n = 73) and iqmik users (n = 20) were recruited in a cross-sectional study of Alaska Native people. The participants’ CYP2A6 activity was measured by both endophenotype and genotype, and their tobacco and procarcinogen exposure biomarker levels were also measured. Smokers, smokeless tobacco users and iqmik users with lower CYP2A6 activity had lower urinary total nicotine equivalents (TNE) and (methylnitrosamino)-1-(3)pyridyl-1-butanol (NNAL) levels (a biomarker of TSNA exposure). Levels of N-nitrosonornicotine (NNN), a TSNA metabolically bioactivated by CYP2A6, were higher in smokers with lower CYP2A6 activities. Light smokers and smokeless tobacco users with lower CYP2A6 activity reduce their tobacco consumption in ways (e.g. inhaling less deeply) that are not reflected by self-report indicators. Tobacco users with lower CYP2A6 activity are exposed to lower procarcinogen levels (lower NNAL levels) and have lower procarcinogen bioactivation (as indicated by the higher urinary NNN levels suggesting reduced clearance), which is consistent with a lower risk of developing smoking-related cancers. This study demonstrates the importance of CYP2A6 in the regulation of tobacco consumption behaviors, procarcinogen exposure and metabolism in both light smokers and smokeless tobacco users
    corecore